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Abstract Data incompleteness is one of the most impor-
tant data quality problems in enterprise information systems.
Most existing data imputing techniques just deduce approxi-
mate values for the incomplete attributes by means of some
specific data quality rules or some mathematical methods.
Unfortunately, approximation may be far away from the truth.
Furthermore, when observed data is inadequate, they will not
work well. The World Wide Web (WWW) has become the
most important and the most widely used information source.
Several current works have proven that using Web data can
augment the quality of databases. In this paper, we propose
a Web-based relational data imputing framework, which tries
to automatically retrieve real values from the WWW for the
incomplete attributes. In the paper, we try to take full ad-
vantage of relations among different kinds of objects based
on the idea that the same kind of things must have the same
kind of relations with their relatives in a specific world. Our
proposed techniques consist of two automatic query formu-
lation algorithms and one graph-based candidates extraction
model. Several evaluations are proposed on two high-quality
real datasets and one poor-quality real dataset to prove the
effectiveness of our approaches.

Keywords data incompleteness, imputation, world wide
web, query formulation, candidate selection, semantic rela-
tion

1 Introduction

Data incompleteness is one of the most important and in-
evitable problems in many areas like commercial, science
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computing, medical treatment. To improve data quality, in-
complete data imputation techniques have attracted more at-
tention in the recent decade. They aim at providing estima-
tions of missing values by reasoning from observed data [1].
There are three kinds of data imputation methods. One im-
putes missing values only by virtue of the source data, the
other two try to get the missing values from some extended
information sources or some human experts. Most existing
data imputation methods [2–6] are the former. They purely
use some distribution characteristics or some constrains a-
mong different attributes to deduce approximate values and
look on them as the final imputing values. Their goal is al-
ways to alleviate or eliminate the influence of some incom-
plete attribute values, but not to find real values for them. In
many situations, approximation may be far away from the
truth. Furthermore, most of these approaches require that
there must be some duplicate data, or else they will not work
well. Here we show some examples.

Example 1: Consider the income of a specific person in
the tax systems. His/her annual bonus always accompany
his/her normal salary in December. If we use his/her average
income in the first 11 months to substitute for his/her income
in December, the person’s tax fees may be cut down to a large
extent. It is obviously unreasonable.

Example 2: Consider the publisher of a specific book
whose isbn value is 978-3-642-16261-9 in Table 1. We may
find the functional dependency like isbn→publisher. How-
ever, we cannot use such constrains to deduce its publisher
value because there is only one tuple with the isbn value 978-
3-642-16261-9. In this case, we can only use the most fre-
quently appearing value as the imputing value. Obviously, it
may be not correct.

Importing external information can compensate for the
lack of enough information in relational tables and improve
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the accuracy of data imputing. External information source
can be a human expert, a special knowledge base, a master
data [7] database or the World Wide Web (WWW). Accord-
ing to Google’s report, till July 2008, they had found 1 trillion
Web sites and tens of billions of new Web pages appeared ev-
ery day [8]. The WWW has become the biggest information
source in the world. In comparison with other information
sources and human experts, the WWW covers much more
areas and contains much more information sources. Conse-
quently, it is much more knowledgeable. If we can get needed
information from the WWW efficiently, it can help us impute
more incomplete data and impute more accurately.

Web search engines are the most frequently used informa-
tion retrieval tools. There are always two main steps in the
process of web-search-engine-based data retrieval approach-
es. One is to collect the most related Web documents by
means of a specific search engine according to a set of key-
words. The other is to extract and select the most relevant
object values from the retrieved Web documents. According-
ly, to propose effective Web-based relational data imputation
techniques, we must overcome the following two challenges.

1. As we know, different queries will bring different search
results. To retrieve a missing value via Web search en-
gines, we need effective queries. Although may be in-
adequate, existing information is the best option for im-
proving data quality of a database. If we know sematic
context relations among the complete attributes and the
incomplete attributes, creating an efficient query may be
not difficult. Unfortunately, such kind of relations are al-

ways unclear and cannot be determined from the schema
data directly. As a result, how to use existing informa-
tion to form an efficient query becomes a challenge. For
example, when retrieving the publisher value of the tu-
ple whose isbn value is 978-3-642-16261-9 in Table 1,
the most proper query pattern which consists of other
observed attributes (e.g., isbn, title, author, and year) is
unknown.

2. As the most commonly used information retrieval tools,
Web search engines are designed to retrieve the most re-
lated documents but not values. However, in relational
data imputation tasks, we always need values, such as
a publisher for a book in Table 1. Obviously, there is
a gap. To the best of our knowledge, there are few ef-
fective tools for Web objects retrieving. Therefore, the
second challenge is how to find the most related values
from the retrieved snippets. For a user without any back-
ground knowledge, it is always difficult to define, select
and get proper factors which will have effect on objects
extraction and ranking. And if improper factors are se-
lected, the users may get poor results. So a much more
automatic approach should be provided.

To tackle these challenges, we propose a set of approach-
es in our Web-based relational data imputing system so as
to automatically generate query keywords and automatically
suggest the most probable candidate values for an incomplete
relational database. We make the following contributions.

1. We propose two query formulation algorithms. One
generates query keywords based on a functional depen-

Table 1 Incomplete book records extracted from DBLP dataset(part of)
isbn title author publisher year

978-3-642-16261-9 Nonlinear Dynamics in Human Behavior Raoul Huys NULL 2011

978-3-642-17553-4
Intelligent Video Event

Analysis and Understanding Jianguo Zhang NULL 2010

NULL Mobile Computation with Functions Zeliha Dilsun Kirli Springer 2002
...... ...... ...... ...... ......

NULL Omringd door Informatica Bennie Mols CWI 2010

Table 2 Complete book records extracted from DBLP dataset(part of)
isbn title author publisher year

978-0-387-30768-8 Encyclopedia of Machine Learning Claude Sammut Springer 2010

1-930708-38-6
Database Integrity: Challenges

and Solutions Jorge Horacio Doorn Idea Group 2002

978-0-387-30236-2 Computer Viruses and Malware John Aycock Springer 2006
...... ...... ...... ...... ......

978-0-521-56876-0
Computational principles of

mobile robotics. Michael R. M. Jenkin Cambridge University Press 2000
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dency whose right hand is the incomplete attribute. The
other tries to generate query keywords by learning a
proper composition of the observed values and attribute
names. Our goal is to automatically output a query pat-
tern with the highest FITNESS score, which is defined
in Section 3.1.

2. We propose a graph-based entity ranking model to ex-
tract imputing candidates. Different from traditional en-
tity extraction methods which accumulate the weights of
different factors, our graph-based model tries to learn se-
mantic relation patterns among different objects and use
pattern matching methods to extract target values. The
objects we used include the query keywords, the target
attribute values and other related objects in the Web s-
nippets. All relations are organized in graphs and graph
pattern matching is used to find the most proper values.
In this manner, users just need to input their tables with
some complete tuples. Here a good knowledge of what
factors will affect the selection of the candidates is not
necessary.

3. We implement and evaluate a Web-based data imputing
prototype system which employs our new query formu-
lation methods and object extraction models. The eval-
uation results show that the proposed methods are effec-
tive and can bring more accurate imputation for a rela-
tional table.

The rest of this paper is organized as follows. We formu-
late data imputation problem in Section 2. We introduce the
Web-based imputing framework, detail the query formulation
techniques and candidates ranking model in Section 3. The
experimental study is conducted in Section 4. We survey and
analyze related works in Section 5. Finally, we conclude this
paper in Section 6.

2 Problem Definition

Let U represent the set of the attributes of the table, t repre-
sent a tuple, t[X] represent the X attribute value of t, D rep-
resent a database, the completeness of D can be described as
Formula 1.

Completeness(D) =


0, i f (∃X∃t(t ∈ D ∧ X ⊂ U

∧t[X] = NULL))
1, otherwise

(1)

Let ttrue[X] represent the real value of the attribute X. ε is
a small threshold value. Repairing the incompleteness error
of t[X] means looking for a repairing model M to make the

repaired value satisfy Formula 2. ε is the indicator of the bias
of M. In this paper, we set ε = 0. It means that we want to
retrieve the real but not an approximate value of each missing
attribute value.

|tM[X] − ttrue[X]|
|ttrue[X]|

≤ ε (2)

Let C(t, A) represent the condition of accurately imputa-
tion on the incomplete attribute A, R represent data depen-
dency rules. In rule-based imputing techniques, two precon-
ditions must be satisfied. One is that there must be at least
one data dependency rule pointing to the target attribute. The
other is that there must be at least one reference tuple t′ which
satisfies t′[A] , NULL. Otherwise, we can just use the distri-
bution characteristics of A or other attributes in U to deduce
an approximate value for t[A]. C(t, A) is defined in Formu-
la 3.

C(t, A) =


1, i f (∃X∃r((X ⊂ U ∧ r ∈ R ∧ r : X → A)

∧∃t′(t′ ∈ D ∧ t′[X] , NULL∧
t′[A] , NULL ∧ t[X] = t′[X])))

0, otherwise

(3)

Because the attribute values of some tuples may be unique,
which means it is difficult to find a reference tuple to impute
the missing values, the preconditions in Formula 3 are obvi-
ously too secrete. Missing values must hide somewhere, most
possibly on the WWW. If we can find them, accurate impu-
tation can be achieved. So we can relax the conditions and
adjust the formula as Formula 4.

C(t, A) =


1, i f (∃X∃r(X ⊂ U ∧ r ∈ R ∧ r : X → A∧

t[X] , NULL) ∧ IsInWeb(t[A])
0, otherwise

(4)

IsInWeb(t[A]) is an indicator function. Only when t[A]
exists in the WWW, it returns true. To retrieve the missing
values, some observed values are necessary. So R should be
relaxed to represent some relations between X and A. Ob-
viously, Formula 4 is the necessary condition for Web-based
attribute value imputation techniques. Our goal is to devel-
op a mechanism to learn R and pick out the missing values
effectively and automatically from the WWW.

We will use an example to help us explain our approaches
more clearly in later parts of our paper. The example is as
following.

Example 3: Table 1 and Table 2 are two subsets of the
book record of DBLP dataset [9]. Table 1 contains some in-
complete tuples and Table 2 is the training set with complete
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tuples. Our goal is to impute the missing values of the pub-
lisher attribute in Table 1.

3 Web-based imputation approach

GUI

Search Engine

Data Analysis & Query 
Formulation Module

Candidate Value
Extracting & Ranking

Module

Data Recovery 
Module

Verification

Feedbacks

Incomplete Data Complete Data

Search 
Results

Query
（key words)

Candidates

Fig. 1 Automatic Web-based relational data imputation framework

Our automatic Web-based imputation platform is illustrat-
ed in Figure 1. It contains three modules, including Data
Analysis & Query Formulation Module for missing value de-
tection and query formulation, Candidate Value Extracting
& Ranking Module for candidate values extracting and rank-
ing, Data Recovery Module for missing value substitution
and verification. Next we will introduce each module one
by one.

In the Data Analysis & Query Formulation module, we
firstly detect whether there are some incomplete tuples. If so,
we will construct a training set and then learn a proper query
pattern based on it. In Example 3, the query pattern learn-
t may be (“publisher”, t[isbn], t[year]). Then, we can use
“publisher, Encyclopedia of Machine Learning, 2010” as the
keywords of Bing to fetch related Web pages. In this module,
we will employ two new query formulation algorithms. One
is rule-based, the other is genetic-based.

In the Candidate Value Extracting & Ranking module, we
extract candidate values from the Web snippets generated in
the former module and then rank these values. Here, we u-
tilize some widely used techniques to extract related object-
s, like the named entity identification techniques used in E-
phyra [10]. Our focus is on how to pick out the most proper
ones from all the extracted candidates. To do this, we intend
to make use of semantic relations among different kinds of

objects across a relational table and the WWW. For instance,
in Example 3 we will utilize the relations among the values of
publisher, isbn, year and other objects from the WWW like
co-author names, editor names to rank the candidates and fi-
nally pick out the top ranked candidate “Springer” for the
first tuple in Table 1.

In the Data Recovery module, we will use the top
ranked value to fix the corresponding tuples. For instance,
“Springer” will be used as the final value of the incomplete
tuple.

3.1 Query Formulation

3.1.1 Problem Definition

According to Formula 4, observed values in the same tuple
are necessary. Consequently, the essence of query formula-
tion problem is to find a proper composition from the ob-
served values and the attribute names. The query formulation
problem can be defined as Definition 1.

Definition 1. Assume that the attribute names of a relational
table are described in the form A( A1, A2, ..., Ai) and the
attribute values of a tuple are described in the formV( v1, v2,
..., vi). Assume that some values of Am are missing. The query
formulation problem can be defined as selecting a subset of
Ai and vi to create a query pattern which is very likely to
obtain the missing values of Am.

When creating a query, the more items are selected from
R, the more limitations are appended to. It may reduce down
the possibilities to find the missing values from the WWW.
And, the attribute names may not always co-appear with the
attribute values. So, when formulating a query for a missing
value, we only select the attribute name of the target missing
value fromA. A query patten (QP) for Am can be defined in
Definition 2.

Definition 2. QP(Am) = Am, vi, ...., vn

Intuitively, two factors should be taken into consideration
to judge whether the query pattern QP(Am) is proper. One is
how many tuples it can cover and the other is how tightly it
can cover. So the f itness value of QP(Am) can be calculat-
ed as Formula 5. Here SUPPORT represents the ratio of the
training tuples which supports the query pattern and CON-
FIDENCE represents the average ratio of the result snippets
which contain the expected target values.

FIT NES S (QP(Am)) = α×S UPPORT+(1−α)×CONFIDENCE
(5)
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Definition of SUPPORT is as Formula 6. In the formula,
n represents the number of the tuples whose target values can
be retrieved by the query pattern and N represents the total
number of the training tuples. Assume 1000 tuples are se-
lected from Table 2 as the training data and 800 tuples’ pub-
lisher values are found by virtue of the query pattern q. The
S UPPORT value of q will be 800/1000 = 0.8.

S UPPORT =
n
N

(6)

Definition of CONFIDENCE is as Formula 7, in which
ni represents the number of the snippets which contain the
expected value of the tuple i, NS represents the number of the
returned snippets. Given a query patter q. Assume each time
we only consider 100 snippets returned by the web search
engine. For the first tuple, 20 snippets contain its publisher
value. For the second, 40 snippets do. For the third tuple,
only 10 do. If the training data set only contains three tuples,

the CONFIDENCE value q is
20+40+10

100
3 .

CONFIDENCE =

∑N
i=1

ni
NS

N
(7)

The greater the SUPPORT value is, the more training tu-
ples support the query pattern, which means the more prob-
abilities we can retrieve the missing attribute values by the
query pattern. The greater the CONFIDENCE is, the larger
number of the result snippets contain the target value, which
means the more confidence the values retrieved are the prop-
er values. α and (1 − α) are the coefficients of SUPPORT
and CONFIDENCE. We think that the SUPPORT factor is
more important than the CONFIDENCE factor, because it is
difficult to require a query with high CONFIDENCE value,
especially for the information that is not widely distributed in
the WWW. Other factors like the ranking strategies of Web
search engines and the number of selected retrieved snippet-
s will also affect CONFIDENCE value. So we set α greater
than (1 − α) in our model, such as α=0.8 and (1 − α)=0.2.

We can simply try all compositions of the sets A and
V for each training tuple, then select the composition with
the highest FITNESS score as the final query pattern. Let
P(n, i) represent the number of i − permutations. The num-
ber of the compositions of a set which contains n attributes
is
∑n

i=1 P(n, i). Each composition determines a query pattern.
To pick out the best one, we need compute the FIT NES S
values of all query patterns. According to Formula 5,
we need employee a query pattern on each training tuple.
So, on m training tuples, the number of queries will reach∑n

i=1 P(n, i)×m. Since each try need call Bing or Google Web
Search API and it is not free, this strategy is time-consuming

and money-consuming. To guarantee imputation accuracy,
a proper number of training tuples are need. It means that
m is always fixed. On this occasion, we can only cut down∑n

i=1 P(n, i). In other words, we need try less compositions so
as to cut down the cost.

The observed values and the missing one are always inter-
connected in some semantic manner on the WWW. So if we
can identify these semantic inter-connected compositions, it
can help us find a proper query quickly. In other words, a
proper query should come from the most intensive semantic
inter-connected compositions. Based on this idea, we pro-
pose two methods. One is rule-based query formulation al-
gorithm which directly utilizes functional dependencies as
query patterns to create queries. The other is genetic-based
query formulation algorithm which uses machine learning
techniques to find some hidden connections between the ob-
served values and the missing one, then use a proper one of
them to create queries.

3.1.2 Rule-based Query Formulation Algorithm

Algorithm 1 Rule-based query formulation algorithm
Input:

T A: target attribute
T D: training tuples
FT : fitness threshold
FD: functional dependencies

Output:
BI: best query pattern.

1: FD = FindFDsByTane(T D,T A);
2: bestFitness = 0.0;
3: for each f d in FD do
4: query = GenerateQueryPattern( f d,T A);
5: for each t[i] in T D do
6: keywords = GenerateQueryKeywords(query, t[i]);
7: results[i] = BingS earchAPI(keywords);
8: end for
9: f itness = ComputeFitness(T D, results);

10: if f itness >= FT and f itness > bestFitness then
11: bestFitness = f itness;
12: BI = query;
13: end if
14: end for
15: return BI;

A functional dependency rule f d : X → Y means that a
set of attributes X uniquely determine another set of attributes
Y . If all attributes in X are complete and the incomplete at-
tribute is in Y , we can consider values of the attributes in
X to be the query keywords for retrieving values of the in-
complete attribute. If we get a related functional dependen-
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cy f d1 : isbn → publisher in Example 3, we can gener-
ate the query pattern QP1 : (“publisher”, t[isbn]) and then
use it to retrieve missing publisher values. There may be
several such functional dependencies and consequently we
will get several query patterns. On this occasion, we se-
lect the one with the highest FIT NES S value as the final
query pattern. Assume we get another related functional de-
pendency f d2 : (title, author, year) → publisher in Exam-
ple 3. Besides QP1 : (“publisher”, t[isbn]) , we can also
get QP2 : (“publisher”, t[title], t[author], t[year]) according
to f d1 and f d2. Based on the training tuples in Table 2,
we can work out the FITNESS values of QP1 and QP2. If
FIT NES S (QP2) > FIT NES S (QP1), we select QP2 as the
final query pattern. The algorithm is detailed in Algorithm 1.
In our work, we use TANE [11] to find functional dependen-
cies and then use them directly to create queries.

3.1.3 Genetic-based Query Formulation Algorithm

Give a lower bound FT . If the FITNESS value of a query
pattern overtakes FT , users will consider it is a proper can-
didate. Here query formulation problem changes to finding
a composition of r and R whose FITNESS score is not low-
er than FT . Genetic algorithm [12, 13] is a good choice in
the situations where the search space is large, complex and
domain knowledge is scarce or expert knowledge is difficult
to encode to narrow the search space. In this section, we try
to adjust the traditional genetic algorithm to learn a proper
query pattern.

Genetic algorithm generates solutions by means of the
techniques inspired by natural evolution process. It always
includes four main steps, such as inheritance, mutation, se-
lection, and crossover. At the beginning of the genetic-based
query formulation algorithm, we randomly set each attribute
value in a tuple selected or not to generate a specified num-
ber of individuals. These individuals form the initial popu-
lation. We use 0 and 1 to represent a attribute value is s-
elected or not respectively. In Example 3, 0011 represents
that isbn and title are not selected but author and year are.
The initial population for retrieval publisher values in Ta-
ble 1 can be P = {0011, 1100, 1001, 0001, 1001}. Then we
look on each individual in P as a query pattern. We can cal-
culate the FIT NES S value of each individual and pick out
the best one. If the best FIT NES S dose not overtake FT , we
will execute use selection operation to select excellent ones
to generate a new population Pnew. In this stage, we apply
the roulette betting strategy. The idea is that the higher the
FIT NES S value of an individual is, the more possibility it

will be selected to reproduce later generations. According-
ly, the possibility of selecting a specific individual I can be
calculated as FIT NES S I∑I∈P

I FIT NES S I
. In the crossover stage, we ap-

ply uniform crossover strategy and randomly cross two indi-
viduals in Pnew. And then, we randomly reverse a bit in the
mutation stage . When the best FITNESS value of the individ-
uals in a population reaches a given threshold, the algorithm
will exit. Assume that we set FT = 0.7 in Example 3. The
FITNESS value of the composition 0101 exceeds 0.7, so the
evolution will stop and the composition (title,year) should be
outputted. It means that we can use the keywords ("publish-
er", Nonlinear Dynamic in Human Behavior,2011) to retrieve
the publisher value of the first tuple in Table 1. The algorithm
is detailed in Algorithm 2.

Algorithm 2 Genetic-based query formulation algorithm
Input:

TA: target attribute
TD: training tuples
FT : fitness threshold
MG: maximum number of generations

Output:
BI: best attribute subset having the best fitness.

1: generate initial population P randomly;
2: bestFitness = 0.0, currentGen = 0;
3: while TRUE do
4: for each I in P do
5: query = GenerateQueryPattern(I,T A);
6: for each t[i] in T D do
7: keywords = generateKeywords(query, t[i]);
8: results[i] = BingS earchAPI(keywords);
9: end for

10: f itness = ComputeFitness(T D, results);
11: if f itness > bestFitness then
12: bestFitness = f itness;
13: BI = query;
14: end if
15: end for
16: if bestFitness >= FT or currentGen > MG then
17: break;
18: else
19: P = selection(P);
20: P = crossover(P);
21: P = mutaition(P);
22: currentGen+ = 1;
23: end if
24: end while
25: return BI;
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3.2 Candidates Extraction

The attributes of a relational table are always context discrete
in the WWW. Even it is not so, the context relations among
them always cannot be extracted directly from the schema
of a table. Consequently, it is difficult to automatically form
an extraction pattern like [14]. In this section, we want to
take full advantage of the relations among different kinds of
objects in the WWW. We will propose a new graph-based
information extraction approach. The main processes of our
approach include related objects collection and candidates
selection. In the first process, we will collect related objects
from retrieved Web snippets using existing techniques. In the
second process, we firstly organize the collected objects into
relation graphs and then rank them so as to find the target
values.

3.2.1 Related Objects Collection

We utilize natural language processing techniques [15] and
named entity identification techniques [16] which are used in
Ephyra [10] to collect related objects. These techniques can
help us extract 154 kinds of entities [10].

The collected objects can be divided into three categories
according to their roles, including context entities(CE), target
entities(TE) and intermediate entities(iE). Their definitions
are listed below.

Definition 3. Context Entities(CE) are the entities which are
involved in the query keywords. They will be marked with
squares in our graph models.

Definition 4. Target Entities(TE) are the entities with the
same type of the incomplete attributes. They will be marked
with the composition of circles and triangles in our graph
models.

Definition 5. Intermediate Entities(iE) are the entities that
are not only excluded by the query keywords, but also with the
different type of the Target Entities(TE). They will be marked
with circles in our graph models.

Assume the query pattern learnt in Example 3 is ("publish-
er", t[title], t[year]). For the last tuple in Table 2, “Computa-
tional principles of mobile robotics” and “2000” are CE enti-
ties, collected publishers like "Kluwer Academic" and "Cam-
bridge University Press" are TE entities, Other entities like
the name of the editors are iE entities. Part of the entities of
this example are listed in Figure 2.

Computational principles of 
mobile robotics 2000

9780521568760
Michael Jenkin

Gregory Dudek

Kluwer Academic 
Cambridge 

University Press

:CE :iE :TE

Fig. 2 A relation graph example (co-appearance)

3.2.2 Candidates Selection

As shown in Figure 2, we may get several TE entities. Only
one of them should be selected as the target value of an in-
complete tuple. A direct way is to select the candidate which
appears most frequently in the WWW as the target one. In
Example 3, if 20 snippets contain “Springer” and 10 snippets
contain “Kluwer Academic”, we will rank the two publishers
by the order “Springer”, “Kluwer Academic”. We name this
method weight-based ranking algorithm.

Weight-based ranking algorithm can not always work well,
because the candidates which appear most frequently may not
be the correct candidates. The reason is that the snippets we
retrieved by a Web search engine always contain not only the
information we really needed but also other homologous in-
formation. The number of the homologous information may
exceed the number of the target information. For example,
we want to get "Cambridge University Press", but "Springer"
may appears more times since most other books in the same
Web page are published by Springer. In this situation, we
may get incorrect results.

In the physical world, if we cannot find something directly,
we may try to find other things related to the target and then
follow them to grasp the target thing. For example, the po-
licemen always try to find a criminal’s girl friend or parents
and then follow them to catch him. This scenario appears
frequently in many films. A tuple is a kind of description of
an object or an event of the physical world. So we can re-
trieve missing values in a table in the same way. The idea is



8
Hailong LIU et al. Automatic Web-based Relational Data Imputation

that we firstly try to find the relation pattern between the ob-
served attributes and the incomplete attributes, and then use
the pattern to help us find the missing values.

In Section 1, we have learnt that which values may be re-
lated to the missing value but not known how do they as-
sociate with each other. Obviously, the vague relations in a
query pattern will help us little in accurately candidate ex-
traction. We need to find a pattern which can indicate more
details in the relations between the observed values and the
missing ones.

The same kind of objects always have the same kind of
characteristics in the natural world. For example, all kinds of
fruits are juicy, sweet, rich in nutrients and come from some
kind of plants. We can generalize these characteristics from
the attributes of some fruits like apples, pears, oranges, and
conclude that all peaches must follow these generalized char-
acteristics. All tuples in the same relational table are homo-
geneous. So, in the same way, we can learn relation patterns
between complete attributes and incomplete attribute based
on a set of complete training tuples. Relations between the
observed values and the missing values of a specific incom-
plete tuple must follow the same relation pattern.

Graph is a proper and widely used model for data rela-
tion description, in which the nodes represent objects and the
edges represent relations. Accordingly, we propose a graph-
based candidates ranking model to help us select the most
proper candidates. In our model, nodes represent the CE, iE
and T E entities, and edges represent relations between these
entities. And furthermore,each graph start from several CEs
and end at several T Es. In all graphs, CEs are generated ac-
cording to the same query pattern QP. It means that all graphs
have the same number and kinds of CEs.

Because each tuple is related to a specific physical object
or event, we need create a graph for each training tuple and
name it a training graph. Although each graph may be spe-
cial, we can generalize some common characteristics from a
group of training graphs for the reason that they represent
the same kinds of physical objects. Based on this idea, we
propose an algorithm to generalize the graph pattern so as to
find the general relations between the observed attribute val-
ues and the missing attribute values.

The framework of our graph-based ranking algorithm is
shown in Algorithm 3. Main procedures include creating re-
lation graphs, generalizing the relation pattern from training
graphs and ranking candidates for incomplete tuples. Details
of each procedure are introduced below.

Creating relation graphs. All entities and relations are
extracted from the snippets return by Bing search API. If two

Algorithm 3 Graph-based candidates ranking algorithm
Input:

TA: target attribute
TD: training tuples
QP: the query pattern used to retrieve the candidates
t : the tuple whose incomplete attribute is TA

Output:
TEL: ranked proper values for TA

1: graphs=CreateTrainingGraph(TD,TA,QP);//Create the
relation graphs of each training tuple

2: PG=Generalize(graphs);//Generalize training graphs
3: CG=CreateCandidateGraph(t,TA,QP);//create the rela-

tion graph of the incomplete tuple t
4: TEL=CandidatesSelection(PG,CG,QP,TA);//rank the

imputing candidates
5: return TEL;

objects relate to each other, firstly they must co-appear in the
same snippet or Web document. So co-appearance is the ba-
sic semantic relation among the collected objects. There are
always some objects which may not co-appear with others or
co-appear just few times. In other words, they are not tightly
connected with others. These objects may help us little. Con-
sequently, we ignore these objects and the relations stemming
from them when creating a graph. To do this, we firstly uti-
lize FPTree algorithm to pick out the frequent item sets and
just look on them as the nodes of each graph. After that, we
mine k frequent appearing couples so as to find the objects
really correlated with each other. Figure 2 is a training graph
for Example 3. Some links between different nodes may ap-
pear several times in different snippets. We mark this kind of
paths in a training graph with thick lines, just like Figure 2.

In Figure 2, relations attached to each edge are co-
appearance. It is certain that the more detailed meanings the
edge represents, the more precision we can get to extract the
relation pattern. So if detail sematic relations like is the mem-
ber of or belongs to can be extracted and attached, it will help
us greatly. In our paper, we extended ReVerb [17] to extract
binary relations expressed by verbs, prepositions, punctua-
tion.

The whole process of creating a relation graph is detailed
in Algorithm 4. Main procedures include extracting related
items, picking out k frequent items, extracting relation be-
tween the objects of a k frequent pair. Mechanisms of these
procedures have been mentioned earlier.

Generalizing the relation pattern from training graphs.
After training graphs are created, we generalize the common
characteristics of them so as to find the relation pattern. It is
obvious that relation graph is composed of several paths and
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Algorithm 4 Create a relation graph
Input:

ROL: Related Objects list
td: a training or target tuple
k: required frequency
QP: the query pattern used to retrieve the candidates

Output:
GRAPH: the relation graph

1: ROL=RetrieveEntitiesFromWeb(td,QP);
2: FrequentItems = FindKFrequentItmes(ROL,k,2);

//Find k frequent item couples in ROL
3: for each FP IN FrequentItems.itempair do
4: ExtractSemanticRelation(FP.first,FP.second)

//Extract Sematic Relation between nodes
5: ClusterSemanticRelation(FP.first,FP.second);

//Clustering the relations in different forms
edge=NewEdge(FP.first,FP.second);

6: if edge IS NOT IN edges then
7: edges=edges.addedges(edge);

//add an new edge with semantic relation
8: nodes=nodes.add(FP.first,FP.second);

//add new nodes
9: end if

10: end for
11: return GRAPH(nodes,edges);

each starts from a CE and ends at a T E. So relation pattern
generation problem can be defined as finding the path patten
from a group of CEs to a specific T E.

Let cei represent a CE entity and te represent the T E en-
tity. From Figure 2, we can see that there are several paths
from cei to te. Our goal is to pick out a path which most
objects will follow, so only one path from cei to te will be
selected when generalizing the path pattern. Obviously, the
more times two items co-appear the more tightly they relate
to each other. In this paper, we use weight to evaluate the co-
appearance frequency of two items. The path with the largest
weight value are the most possibly to be a path pattern. We
use PATH(cei,te) to represent this kind of path and define it in
Definition 6. We marked all members of PATH(cei,te) with
thick lines, just like Figure 2.

Definition 6. PATH(cei, te) is the path with the largest
weight value in the relation graph and it is from a context
entity node cei to the target entity te directly or passing by
several intermediate entities.

Let Gi:cei
Gi:r1

====⇒ ......
Gi:ri

===⇒ te represent PATH(cei,te) in
the graph Gi, NodeType(cei) represent the type of cei and
Ri represent the generalized form of the semantic relation.
The form of the path pattern of PATH(cei,te) can be de-

fined as NodeType(cei)
R1

==⇒ ......
Ri

==⇒ NodeType(te). Here,

path pattern generalization problem can be defined as find-
ing a pattern which can represent the characteristics of the
PATH(cei,te) in most graphs.

PATH(cei,te) in different Gi may be different . We col-
lect PATH(cei, te) from all training graphs and then divide
them into several clusters. We select the biggest cluster of
PATH(cei, te) to represent the general pattern of PATH(cei,
te) . When clustering PATH(cei, te), Path Length, Node Type,
Node Sequence and Semantic Relations should be taken into
account. We use SIM(pi, p j) in Formula 8 to compute the
similarity of PATH(cei, te) in two different graphs. In Formu-
la 8, we accumulate two kinds of similarities. One is the sim-
ilarity of the path without edge semantics, in which we com-
pare the similarities of the nodetypes sequently. The other
is the similarity of the edge semantics, in which we compare
the similarities of the edge semantics sequently. As known,
semantics of an edge may be described in different forms in
different graphs. Therefore, we will generalized semantics of
the edges and use the generalized sematic pattern to represent
the sematic of each edge when creating a graph. The gener-
alized sematic pattern is a cluster. So, when computes the
similarity of the edge semantics, we compute the similarities
of two semantic clusters. Then we can divide all PATH(cei,
te) into different clusters according to the similarities among
them and a given threshold. We pick out the biggest cluster
and look on the whole cluster as the path pattern. In Formu-
la 8, Ndis is used to compute the similarity of each pair of
nodes and Edis is used to compute the similarity of each pair
of edges. When accumulating similarities, we give node sim-
ilarities more weights. In this paper, we manually set α = 0.8
and β = 0.2.

S IM(pi, p j) =

Max(pi.length,p j.length)∑
m=1

NDis(pi.Nm, p j.Nm)

Max(pi.length, p j.length)
× α+

Max(pi.length−1,p j.length−1)∑
m=1

EDis(pi.Em, p j.Em)

Max(pi.length − 1, p j.length − 1)
× β

(8)

NDis(pi.Nm, p j.Nm) =

1 if pi.Nm.NEType==p j.Nm.NEType
0 if others

(9)

EDis(pi.Em, p j.Em) =

1 if pi.Em.cluster==p j.Em.cluster
0 if others

(10)
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Candidate Selection. Till now, we have gotten the query
pattern QP and the pattern graph PG. For a tuple t with a
missing value te, we can use its observed values and QP to
create a query and then a relation graph. The graph created
from an incomplete tuple is named candidate graph(CG). If
the amount of the snippets is enough, the missing value must
exist somewhere in CG. In this stage, our goal is to find it.

The path patterns from each CE to the incomplete attribute
T E have been found and described in PG. The following
work is to match the candidate graph and PG. To do this,
pathes from each cei to all the members of T E which are
with the highest weight values should be picked out from
the CG. These pathes are recorded in the set PAT HCE =⋃i=|CEs|, j=|T Es|

i=0, j=0 {PAT H(cei, te j)}. Then, we compute the sim-
ilarities between a member of PAT HCE and the path pattern
which starts from the same kind of CE in PG . The similari-
ties are computed by the function SIM(pi,p j) defined in For-
mula 8. The path PAT H(cei, te j) with the biggest similarity is
selected and the te j in this path is marked as a candidate. All
the candidates are ranked by the frequency of being marked
and the top 3 ranked candidates are suggested to be the target
imputing values.

4 Experiment Results

We have implemented all our presented approaches in Java
and integrated them into a relational data imputation platfor-
m. In this section, we plan to evaluate the effectiveness of
these approaches. It is obvious that the quality of observed
values will have effects on the retrieval of the missing ones.
In consideration of this, we select three real datasets. Two
are with high original quality but one is not. The accuracy of
imputing different types of values may be different. Conse-
quently, we purposely set various types of values NULL in
all datasets, including different text values (publisher,email)
and different numeric values (isbn, year, zipcode).

Details of these datasets are listed as follows.

1. DBLP [9]. DBLP dataset contains the information of
some publications in various areas of computer sci-
ence. We select five attributes of about 14498 book-
s and import the refined tuples into MySQL. The at-
tributes imported include isbn,title,author,publisher,year
of publication. Then we randomly select 100 tuples
from the imported table to generate incomplete dataset-
s. In DBLP-publisher table we set all the values of the
publisher attribute NULL and in DBLP-isbn table we set
all the values of the isbn attribute NULL.

2. Fortune 1000 Contact Information(2008) [18]. This
dataset contains general contact information of the For-
tune 1000 companies, including Company Name, Main
Office Address, Main Office City, Main Office State,
Main Office Zipcode, Contact Phone Number, Website,
General Contact Email Address, CEO Name, CEO E-
mail Address. Because the General Contact Email Ad-
dress or CEO Email Addresses in some tuples are blank
and their formats are same, in our training table we on-
ly keep the General Contact Email Address. Similarly,
we randomly select 100 tuples to generate incomplete
datasets. In Fortune-zipcode table, we set all the val-
ues of the Main Office Zipcode attribute NULL and in
Fortune-email table we set all the values of the General
Contact Email Address attribute NULL.

3. BX-Books [19]. BX-Books dataset is crawled from
Book-Crossing Community by Cai-Nicolas Ziegler. It
contains 1,149,780 piece of remarks on 271,379 books.
Attributes in the dataset include ISBN, Book Title, Book
Author, Year Of Publication, Publisher, Image_URL_S,
Image_URL_M, Image_URL_L. We delete the last three
URL attributes to generate our own training tables and
test tables. Different from the DBLP dataset and the For-
tune 1000 dataset, the quality of BX-Books are not per-
fect. For example, in our randomly selected 100 tuples,
about 22 tuples’ Publisher values are wrong and 1 tu-
ple’s Year Of Publication is wrong.

We impute these incomplete tables using our presented ap-
proaches and evaluate the accuracy of our solutions. Let Nc

represent the number of the tuples which have been correct-
ly imputed and Nt represent the number of tuples which we
want to impute. Here accuracy = Nc

Nt
× 100%. For the first

two datasets, we use the original complete table as the ground
truth. For the last dataset, in order to compensate for the poor
quality, we manually retrieve the values of publisher and Year
of Publication from some confidential websites, such as A-
mazon, to create the ground truth. In the following experi-
ments, if the candidates are listed in the TOP 3 candidate lists
we think they are found, otherwise the are not. We use Bing
Search API in our experiments.

4.1 The Web-based Imputation Technique vs. Rule-based
Techniques

Each tuple in our datasets is unique, so statistical approaches
are incapable of accurately dealing with them. For a rela-
tional table, we can apply functional dependency rules as the
deduction rules to derive imputation values. Consequently,
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we compare the effectiveness of our web-based imputation
techniques with rule-based techniques here. Related func-
tional dependency rules found by TANE are shown in Ta-
ble 3. For DBLP dataset, no functional dependency rules can
be found for deriving the values of isbn and publisher. And
for the website attribute of Fortune 1000 Contact Informa-
tion dataset and the isbn attribute of BX-Books dataset, be-
cause there are not enough duplicate attribute values in them,
we can impute few missing values. Consequently, rule-based
techniques are also incapable of dealing with the incomplete-
ness of our datasets. The effectiveness of our web-based tech-
niques will be evaluated in the subsequent sections.

4.2 Evaluation of the Query Formulation Algorithms

In this section, we will evaluate the performance of the rule-
based query formulation algorithm and the genetic-based
query formulation algorithm. We mainly compare the FIT-
NESS values of them. The FITNESS values on different at-
tributes are shown in Table 3. On most attributes, the genetic-
based query formulation algorithm outdoes the rule-based
query formulation algorithm. The reason is that functional
dependency rules can only reflect the relations among the
attributes within a table, and incapable of reflecting the re-
lations of the attributes in the WWW. It can not always get
good retrieval results. Besides this, there are no functional
dependency rules in several situations. For example on D-
BLP dataset, we cannot find any functional dependency rules
which determine the values of isbn and publisher. So the
usage of rule-based query formulation algorithm is limited.
Genetic-based query formulation algorithm tries to find the
relations of different values by training, so it can get better
query results.

4.3 Evaluation on the Influence of Different Queries

In this section, we will evaluate the influence of differen-
t queries. Q1, Q2, Q3 and Q4 are the queries which contain
all observed values of the same tuple. Q9, Q10, Q11 and Q12
are the queries generated by our generic-based query formu-
lation algorithm. We also randomly select an unfixed num-
ber of observed attribute values to generate Q5, Q6, Q7 and
Q8. From the results in Figure 3, we can see that the queries
generated by our generic-based approach can help us impute
more data and get more accurate imputation results on most
datasets. Q1, Q2, Q3 and Q4 perform poorly because they
contains too many attribute values. Too many values mean
too many limitations.

Fig. 3 Evaluation on the Influence of different queries

4.4 Evaluation of the Candidates Ranking Algorithms

In this section, we will evaluate the effectiveness of the
weight-based ranking algorithm and the graph-based rank-
ing algorithm. For the sake of fairness, in each pair of com-
parative experiments we use the same queries and the same
entity extraction method. The results in Figure 4 show that
the graph-based ranking algorithm outdoes the weight-based
ranking method according to the number of the real values
listed in TOP 3 and the number of the real values listed in
TOP 1. The weight-based ranking method only tries to find
the most frequently appearing candidates. As we know, the
most frequently appearing ones may not be the correct can-
didates. The graph-based ranking algorithm tries to take ad-
vantage of the relations hidden in the WWW. It matches the
real world better, so it works better.

4.5 Evaluation on the Influence of the Number of Snippets
and Training Tuples

The amount of snippets retrieved and the amount of training
tuples are two factors which will determine the possibilities
of imputing missing attribute values.

From Figure 5, we can see that when we increase the
amount of snippets retrieved by BING Search API, the impu-
tation accuracy also increase. But more snippets mean more
expense to use BING Search API and more compute expense
to build the pattern graphs and target graphs. In our future
work, we will try to build a model to determine how many
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Table 3 Rule-based query formulation algorithm VS. genetic-based query formulation algorithm
Dataset Target Attribute Query Formulation Algorithm Query FITNESS

DBLP isbn FD
GA “isbn”+author + year 0.668

publisher FD
GA “publisher”+title + year 0.772

FORTUNE 1000 zipcode FD “zipecode”+address + state 0.946
GA “zipecode”+address + phone + website 0.924

email FD “email”+website 0.027
GA “email”+address + website + ceoname 0.252

BX-BOOKS year FD “year”+isbn 0.292
GA “year”+isbn + title + author 0.58

publisher FD “publisher”+isbn 0.345
GA “publisher”+isbn + year 0.538

Fig. 4 Graph-based ranking algorithm VS. weight-based ranking algorithm

snippets we should get to reach the best balance between the
expanse and imputation accuracy.

From Figure 6, we can see that when we increase the
amount of training tuples which are used to form graph pat-
terns, for some attributes imputation accuracy increases ob-
viously, but for others no obvious change is observed. The
reason is that the relation patterns can be determined by a
proper amount of examples. After that, more examples can
only strengthen the relation patterns but not change them. For
different attributes, the proper amount may be different.

4.6 Accuracy Analysis of Our Web-based Data Imputation
Platform

In this part, we evaluate the accuracy of our Web-based tech-
niques on different kinds of incomplete values. Specifically,
we select a textual attribute and a formatted numeric attribute

Fig. 5 Evaluation on the influence of the number of snippets

in DBLP dataset, a normal numeric attribute and a formatted
textual attribute in FORTUNE 1000 dataset, a textual attribute
and a short numeric attribute in BX-BOOKs dataset.

From Figure 7, we can see that our approach can impute
about 60 percent of the missing values and about 50 percent
can use the TOP1 candidates as the final value directly in the
DBLP dataset and FORTUNE 1000 dataset. The result shows
that our approach is effective on all evaluated datasets.

Focusing on the accuracies on different kinds of attributes,
we can find that our approaches perform differently on differ-
ent attributes in Figure 7. Considering the TOP3 candidates,
the imputation accuracy on FORTUNE-zipcode is much high-
er than the accuracies on other attributes, and the imputation
accuracy on FORTUNE-email is the lowest. As is known to
us, different kind of values are in different distribution in the
WWW and the more widely the real candidates are distribut-
ed the more possibilities we can find them. We know that
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Fig. 6 Evaluation on the influence of the number of training tuples

there are a lot of Web-pages containing the zipcode of an ad-
dress, but fewer Web-pages containing the general email of a
specific company. Consequently, the imputation accuracy on
FORTUNE-zipcode is much higher than the imputation accu-
racy on FORTUNE-email.

Fig. 7 Accuracy of our Web-based automatic data imputation techniques

We also evaluate our approach on the dataset BX-BOOKS,
in which there are errors in some observed values. From Ta-
ble 4, we can see that our approach can still retrieve good
imputation candidates for the publisher attribute. But for
the Year of Publication attribute, the imputation accuracy de-
creases to some extent. We conclude that there are two rea-
sons. One is the influence of the errors in the publisher val-
ues, which will make us get unrelated snippets. The other
is that there may be several related year values in the same

snippet and they are much harder to be distinguished.

Table 4 Accuracy of BX-BOOKS imputation
Dataset Target Attribute TOP3 TOP1

BX-BOOKS publisher 80% 54%
BX-BOOKS Year of Publication 45% 36%

5 Related work

There exist three kinds of techniques to enhance information
quality, including self_info-based techniques , external_info-
based techniques and human_based techniques [20].

Self_info-based techniques just use intrinsic knowledge of
the given database to improve the data quality of a database.
Several statistical approaches have been introduced and com-
pared in [1, 2, 4], like mean imputation, selecting the most
common attribute value as the missing value , assigning all
possible values of the attribute restricted to the given concep-
t, treating missing attribute values as special values and so
on. [21], [22] and [23] try to use data mining techniques, like
machine learning, data classification, to find some approxi-
mate values of incomplete attributes. These methods purely
rely on observed data to calculate or deduce missing values.
So only when data is generally well organized and enough in
the database, they may work well. Otherwise, they perform
poorly, especially on the occasion that the amount of missing
values exceeds a threshold. And what’s more, their goal is to
eliminate the influence of information missing but not to find
real values. So these methods can not impute data accurately.

Human_based techniques improve the confidence of er-
ror detection and correction techniques by considering hu-
manąŕs suggestions carefully. [24] and [25] try to utilize hu-
man’s feedbacks to improve the confidence of data repairing
operations. Human’s feedbacks are the most effective and ac-
curate way to repair data errors in a small specific area. But
it is not efficient to deal with huge data and also incapable in
unfamiliar areas. So, although these methods are effective,
they can only be used in some specific areas.

External_info-based techniques try to use the information
from external data sources, such as a knowledge base or the
WWW. Using master data [7] to detect tuple missing errors in
a database [26–28] is a typical work which introduce external
information to improve data quality. However, in most enter-
prises master data only exists to record the most important
information of the organization, such as the information of
the assets, employees or projects. In other applications there
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is always no master data. As the biggest information system
in the world nowadays, the WWW is much more knowledge-
able than its competitors, such as knowledge bases and mas-
ter data databases in specific domains [20]. There are sever-
al Web-based works to complete a list or a relational table.
Google Sets [29], SEAL [30, 31], NTT Set Expansion Sys-
tem [32] and WebSets [33] try to expand a list from several
seeds with the help of the WWW. Their goal is to find the
same kind of objects from related Web tables. Unfortunately,
they are just effective on few regions till now, such as cars,
fruits, et al. In other areas, they do not perform well. Be-
cause their goal is different from us, it can not be used in our
paper. [34] and [35] try to integrate Web information into a
knowledge bases. They are focused on information enriching
but not quality enhancing. These techniques can not be used
directly in our work. [36] proposes a Web-based technique
to complete the relations between two datasets. It uses some
known relations as seeds to learn the context pattern between
two datasets and then use the context pattern to extract new
relations between the target datasets. [14], [37] , [38] and [39]
try to find real values of incomplete attributes of a relational
table from the WWW. [37] proposes a web-based imputation
method for improving the accuracy of Bayes classification
networks. It tries to retrieve necessary numerical informa-
tion from the WWW to compensate for the influence of in-
complete values. [37] manually generates queries to retrieve
documents and then utilize WHISK [40] to extract target in-
formation. Obviously, [37] is not an automatic method and
can only be used to retrieve specific numeric data. In [14],
pattern based data imputation(P-DI) and co-occurrence based
data imputation strategies are proposed. P-DI and C-DI learn
syntactic patterns and common context terms between two
specific attributes respectively from some training tuples and
then use them to retrieve missing values. In [14], the observed
attributes which may help us retrieve the missing attributes
are assumed known and its main work is to learn their rela-
tions. [38] and [39] try to improve the performance of [14].
These works are different from us for the reason that our in-
put is just an incomplete table without any other knowledge.
We have given a detail survey of these works in [41].

6 Conclusions

In this paper, we study on Web-based techniques for automat-
ically imputing incomplete relational databases. To generate
proper queries more efficiently, we propose two query formu-
lation algorithms. One tires to utilize functional dependency

rules directly and another tries to learn a proper pattern by ge-
netic algorithms. To tackle the challenge on finding the most
proper candidate imputing values, we propose a weight-based
object extraction model and a graph-based object extraction
model. Because the graph-based model takes full advantage
of the semantic relations among different kinds of objects, it
performs better. The detailed evaluations show that our ap-
proaches are effective and can dealing with the occasion that
most tuples in a table are incomplete.

To cut down imputation cost, we will build some models
to determine the proper amounts of the snippets and training
tuples for each attribute in our future work. And further more,
we will extend our approaches so as to deal with the situation
that multiple incomplete attributes exist in one tuple.
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