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Abstract Entity resolution (ER) plays a fundamental role
in data integration and cleaning. Even though many ap-
proaches have been proposed for ER, their performance on
the data sets with different characteristics may vary signifi-
cantly. Given a practical ER workload, it remains very chal-
lenging to select an appropriate resolution technique while
applying multiple techniques simultaneously would result in
inconsistent resolution. In this paper, we study the problem
of how to reconcile the inconsistent results of different label-
free resolution techniques. We first propose a generic label-
free reconciliation framework, denoted by GL-RF. The pro-
posed framework does not require to manually label pairs, but
reasons about the match status of the inconsistent pairs pure-
ly based on the implicit information contained in the con-
sistent pairs. We then formalize the reconciliation problem
and present an incremental K-neighbor influence algorithm.
Finally, we empirically evaluate the performance of the pro-
posed approach on the real data sets by a comparative study.
Our extensive experiments show that GL-RF performs con-
siderably better than the state-of-the-art alternatives.

Keywords data quality, data integration, entity resolution,
inconsistent pairs, vector representation

1 Introduction

Entity resolution (ER), also referred to as record linkage and
entity matching [1], is a long-standing challenge, existing
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in various data management systems, particularly data inte-
gration and cleaning systems. As so often happens, there
exist multiple data sources which store duplicate real-world
entity information in different descriptions, incurred by mis-
spellings, typos, diverse name conventions, random usage of
the abbreviation or full name, ongoing changes such as in
DBpedia [2], and so forth. The purpose of ER is to determine
whether two data records describe the same real-world entity.

The existing techniques for ER can be broadly catego-
rized into learning-based [3, 4] and label-free [5–7]. The
learning-based techniques require manually labeled training
data while the label-free techniques do not have such require-
ment. The performance of the learning-based techniques to a
large extent depends on the amount of available training da-
ta. Unfortunately, in practice, a new ER workload may come
with a very limited amount of training data. In this scenario,
the label-free techniques are usually more appropriate. Even
though there are many label-free techniques proposed for ER,
their performance on the data sets with different characteris-
tics may vary significantly. A practitioner, provided with a
new ER workload, may still encounter the challenging prob-
lem of how to choose an appropriate technique. It can be ob-
served that in the absence of manually labeled training data,
it is nearly impossible to pick the best performer among the
existing techniques. A natural alternative is therefore to first
simultaneously apply different techniques and then reconcile
inconsistent results. Consider the following example:

Example 1 Two databases D1 and D2, as shown in Ta-
bles 1 and 2, consist of a wealth of literature records. Each
record describes the title, authors and identity of an article.
A pair consists of two records (i.e., one in D1 and the other
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Table 1 Records on D1

rID(D1) title authors

r1,1 An On-Line Self-Tuning Markov Histogram for XML Path Selec-
tivity Estimation

L Lim, M Wang, S Padamanabhan, JS Vitter, RXPL

· · · · · · · · ·
r1,8 Loading a Cache with Query Results LM Haas
r1,9 An investigation into loading a cache with query results L Haas, D Kossmann, I Ursu

Table 2 Records on D2

rID(D2) title authors

r2,1 XPathLearner: An On-line Self-Tuning Markov Histogram for
XML Path Selectivity Estimation

L Lim, M Wang, S Padmanabhan, J Vitter, R Parr

· · · · · · · · ·
r2,8 Loading a Cache with Query Results L Haas, D Kossmann, I Ursu

Table 3 An Example of Inconsistent Pair Reconciliation Problem

pID rID(D1) rID(D2) M1 M2 M3 Golden

p1,1 r1,1 r2,1 P P P P
p2,2 r1,2 r2,2 P P P P
p3,4 r1,3 r2,4 P P P N
p4,5 r1,4 r2,5 N N N N
p5,4 r1,5 r2,4 N N N N
p6,6 r1,6 r2,6 N N N P
p7,7 r1,7 r2,7 P N P P
p8,8 r1,8 r2,8 P N N P
p9,8 r1,9 r2,8 N P P N
p8,10 r1,8 r2,10 N N P N
p12,11 r1,12 r2,11 N P N N
p13,13 r1,13 r2,13 P P N N

in D2). Table 3 presents the resolution results of the twelve
pairs solved by a rule-based method (M1), a distance-based
method (M2), and a cluster-based method (M3), where P in-
dicates the match, N indicates the non-match and the values
at the column of Golden indicate the ground-truth status. The
rule-based method leverages a variety of rules derived from
human experts or data sets, the distance-based method in-
vestigates how to propose an appropriate metric with certain
threshold through statistical analyses, and the cluster-based
method depends on an intuition that the more similar struc-
ture records have, the more likely these records depict the
same real-world entity. It can be observed that M1, M2 and
M3 produce both consistent results (e.g., on the pairs, p2,2

and p3,4) and inconsistent results (e.g., on the pairs, p8,8 and
p13,13). The performance of different techniques can also vary
on different pair instances. For instance, M1 correctly predict-
s the status of the pairs, p8,8 and p9,8, while M3 fails at both
of them. In contrast, at the pair of p13,13, M1 fails but M3

succeeds.

In the example shown above, a consistent pair can be ob-
viously labeled by the consensus resolution result. The prob-
lem of how to label the inconsistent pairs is however non-

trivial and challenging. The naive approaches based on ma-
jority or weighted voting [8] usually have limited effective-
ness in practical scenarios. In this paper, we propose a nov-
el framework to reconcile the conflicting results of differen-
t label-free resolution techniques. The proposed framework
reasons about the match status of inconsistent pairs purely
based on consistent pairs. It thus has the attractive proper-
ty of not requiring any manually labeled results. The major
contributions of this paper can be summarized as follows:

1. We propose a novel reconciliation framework for label-
free entity resolution. It can effectively take advantage
of the hints implied by the consistent pairs to reason
about the match status of the inconsistent pairs.

2. We investigate the inconsistent pair reconciliation prob-
lem and present a solution based on k-neighbor influ-
ence estimation. The solution represents a pair by a tf-
idf vector and quantifies the influence of a reference pair
over an inconsistent pair by their vector similarity.

3. We conduct extensive experiments on the real-world
data sets to evaluate the performance of the proposed
framework. Our experimental results show that it per-
forms considerably better than the state-of-the-art alter-
natives on quality and its efficiency scales well with data
size.

The rest of this paper is organized as follows: We review
more related work in Section 2. We present an overview of
the proposed framework in Section 3. We define the recon-
ciliation problem and present the incremental k-neighbor in-
fluence algorithm in Section 4. We present our empirical e-
valuation results in Section 5. Finally, we conclude this paper
with some thoughts on future work in Section 6.
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2 Related Work

Previous researchers realized the importance of entity resolu-
tion (ER). Therefore, it has been extensively studied [9] and
a variety of models or tools [1, 10–15] have been proposed.

Several studies focus on rule-based approaches that extract
information from either data or ad-hoc experts. [16] defines
Matching Dependencies (MDs), which tell us whether two
records match or not, and provides a mechanism for inferring
more MDs, according to a small set of MDs. [3, 4] can learn
entity matching rules from the training set, with the aim of i-
dentifying records that depict the same real world entities. [3]
proposed ER-rule, which servers for non-pairwise entity res-
olution approaches, and [4] defined the record-matching rule
(RR), which can be applied by pairwise entity resolution ap-
proaches. We refer to label-free entity resolution methods as
individual methods, so as to distinguish them from reconcil-
iation methods. Our individual rule-based method employs
matching rules, that are generated in the form of RR with a
weight assigned to each record-matching rule.

There are several works [5–7] to identify matches using
distances for the case where training data and domain knowl-
edge are absent. The Footrule Distance was defined by [6],
and was leveraged to identify the top-k tuples "most related"
to a given tuple in the merging process of ranked lists of ap-
proximate match operations. [7] presented a distance-based
measure, a weighted sum of the distances between attribute
values, and then leveraged it to assist in a decision-theoretic
model for identifying matches. [5] defined the centrifugal dis-
tance of a record pair to guide an Outlier-Detection based
approach for entity matching. We select the representative
work [5] as an individual method.

There are various unsupervised clustering techniques pro-
posed in the machine learning community, such as K-Means
clustering, Gaussian mixture model and their variants [17,
18]. Several researchers leverage these techniques to group
record pairs into a match or non-match cluster. The Freely
Extensible Biomedical Record Linkage system (Febrl) [10]
provides the ’KMeans’ and ’FarthestFirst’ models. We se-
lect its ’KMeans’ implementation as the representative work
among cluster-based approaches.

Other literature is in pursuit of extra information such as
Crowdsourcing [14] and the combination of human and ma-
chine wisdom [15] to improve the performance of entity res-
olution. However, among them, there is little endeavor to
employ the results of off-the-shelf approaches.

There are several studies, with the aim of devising conve-
nient frameworks. [10] offered Febrl, which contains a series
of off-the-shelf record linkage techniques for practitioners,
and provides a convenient GUI. [19] has proposed a frame-
work for evaluating entity resolution (FEVER), which serves
to automatically evaluate different entity resolution approach-
es under different configurations, in order to provide better
parameter settings. In contrast, our framework is to cooper-
ate with individual methods to improve the effectiveness of
entity resolution.

Closer to our work are the ensemble models [17] in the
machine learning community, such as AdaBoost, Random
Forest and so forth. However, as these models require the
presence of training data, it is impossible to apply these mod-
els for performing the entity matching task without sufficient
training data. Our framework focuses on the case where train-
ing data is not accessible.

3 The Reconciliation Framework

In this section, we present a Generic Label-free
Reconciliation Framework for entity resolution (GL-
RF). For the sake of presentation, we introduce the used
notations in Table 4.

GL-RF, as shown in Fig. 1, takes two relational tables,
D1 and D2, and the label results of multiple resolution tech-
niques, M1, M2 , . . . , Mn, as input. It divides the pair in-
stances into two sets: (i) one consisting of consistent pairs,
whose labels stemmed from individual techniques are the
same, and (ii) the other consisting of the inconsistent pairs,
whose labels stemmed from individual techniques are con-
flicting. The reconciliation component consists of three pro-
cedures: reference pair generation, pair vector representation
and inconsistent pair reconciliation. In the rest of this section,
we detail these three procedures in turn.

Generate Reference 

Pairs

Vector 

Representations

Reconcile 

Inconsistent Pairs

Reconciliation

D1 D2

M1 MnĊM2

Individual Methods

Consistent  

Pairs

Inconsistent 

Pairs

Fig. 1 Framework Overview

Notations. Given two relational tables (D1, D2), and individ-
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Table 4 Summary of Notations

Symbols Semantics
Di the i-th relational table that contains a set of records
ri, j the j-th record in Di
Mk the k-th individual method
pi, j a pair (i.e., a record pair) that contains two records

(i.e., r1,i ∈ D1 and r2, j ∈ D2)
P (or N) a match (or non-match) label
P(Mk) match pairs generated by Mk
N(Mk) non-match pairs generated by Mk
Pc consistent pairs generated by M1, M2 , . . . , Mn
Pcp (or Pcn) consistent positive (or negative) pairs
Pc inconsistent pairs generated by M1, M2 , . . . , Mn
pr a reference pair
Rp(orRn) reference positive (or negative) pairs

ual methods (M1, M2, . . . , Mn), the results of some method
Mk are comprised of matched pairs P(Mk) and non-matched
pairs N(Mk), where P(Mk) (or. N(Mk)) can be produced ex-
plicitly (or implicitly). All pairs can be classified into scon-
sistent pairs Pc and inconsistent pairs Pc. Pc can be further
divided into the consistent positive pairs Pcp and the consis-
tent negative pairs Pcn, according to whether consistent pairs
are matched or non-matched.

Example 2 Consider two relational tables, D1 and D2,
and Mk(1 ≤ k ≥ 3). Table 3 shows results of three in-
dividual methods for a given entity matching task. Based
on the semantics of P(Mk) and N(Mk), we can derive the
following: (i) P(M1) = {p1,1, p2,2, p3,4, p7,7, p8,8, p13,13} and
N(M1) = {p4,5, p5,4, p6,6, p9,8, p8,10, p12,11}. For M1, the pre-
dicted labels of pairs in P(M1) (resp. N(M1)) are P (resp. N).
(ii) p1,1 is a consistent positive pair, and p4,5 is a consisten-
t negative pair. Then we can derive Pcp = {p1,1, p2,2, p3,4},
Pcn = {p4,5, p5,4, p6,6}, and Pc = Pcp ∪ Pcn. (iii) p8,10 is an
inconsistent pair, owing to p8,10 ∈ P(M3) and p8,10 ∈ N(M1).
Further, our work focuses on how to reconcile pairs in Pc

(i.e., {p7,7, p8,8, p9,8, p8,10, p12,11, p13,13}). �

Reference Pair Generation. In general, the set of reference
pairs can be composed of all the consistent pairs. However,
in practice, the set of consistent pairs is usually huge because
it contains many non-matched pairs. It can be observed that
the consistently non-matched pairs with very low similarity
usually are far away from inconsistent pairs. Therefore, we
propose to filter these pairs according to their similarity, and
select its subset as reference negative pairs Rn. We regard
Pcp as reference positive pairs Rp, since pairs in Pcp contain
valuable information of matched pairs.

Pair Vector Representation. Pair vector was traditionally
represented by the similarity of the attribute values of two re-
lational records. However, the values of different attributes

may contain common contents (e.g., both the name and de-
scription of a product contain its product number). There-
fore, GL-RF represents a record by the tf-idf [20] values of
its words (or phrases) and represents a pair by its two records’
vector difference. Note that each dimension of a pair vector
corresponds to a word or phrase. The tf-idf value of a word
quantifies its significance for entity resolution. It is computed
based on the entire data set. The vector representation for a
given record r or a pair p is denoted as v(r) or v(p).
Example 3 In Tables 1 and 2, given v(r1,1) =

[0.19, 0.0, · · · , 0.28] and v(r2,1) = [0.19, 0.0, · · · , 0.28],
v(p1,1) is [0.0, 0.0, · · · , 0.28] based on v(pi, j) = v(r1,i)−v(r2, j).

Inconsistent Pair Reconciliation. In GL-RF, the reference
set (a subset of consistent pairs) and the test set (consisting
of inconsistent pairs) are not drawn from the same distri-
bution. Therefore, the traditional learning-based approach-
es (e.g. SVM and Decision Tree) can not be applied for
reconciliation, according to probably approximately correc-
t learning [21], under which results of the learning theory
were proved. We instead propose a K-neighbor Influence Al-
gorithm (KIA). It essentially predicts the status of a pair by
aggregating the influence of its neighbors.

4 An Algorithm for Reconciling Inconsistent
Pairs

In this section, we propose our solution for the reconcilia-
tion problem, and present the K-neighbor Influence Algorith-
m (KIA). We also provide the complexity analysis of the pro-
posed algorithm.

Given a set of consistent pairs, Pc, and a set of inconsistent
pairs, Pc, the problem is to predict whether an inconsistent
pair pc in Pc matches or not. We construct our solution based
on the following observation: a pair can be considered to be a
match pair if it is generally more similar to its top-k matched
reference pairs than its top-k non-matched reference pairs,
and vice versa.

We refer to a Gaussian function of the distance between
an inconsistent pair vector, v(pc), and a reference pair vector,
v(pr), as the influence of pr over pc. The influence of pr

over pc decreases with their increasing distance. Formally,
we define the influence strength as follows.

IS (pr, pc) = e−0.5·d(v(pc),v(pr))·d(v(pc),v(pr)) (1)

where v(pr) and v(pc) are separately the vector representa-
tions of pr and pc, and d(v(pc), v(pr)) is the Euclidean dis-
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tance between v(pr) and v(pc).
A positive (or negative) reference pair pp

r (or pn
r ) provides

extra evidence that its neighboring pair pc is likely matched
(or non-matched). We refer to this evidence as a signal label
of pr, denoted by ι(pr). If pr ∈ RP , ι(pr) is 1, otherwise ι(pr)
is -1.

We incorporate the vote information as a penalty factor
for the influence strength, in order to avoid the mistake that
a truly matched (or non-matched) pair with less (or more)
votes is mistakenly considered as non-matched (or matched).
For instance, if pc achieves more votes, the inference strength
from Rp should be with a little penalty. Given pr and pc,
we define the penalty factor, denoted by PF(pr, pc), as the
following.

PF(pr, pc) =

1 − Pvote(pc) ι(pr) = 1
Pvote(pc) ι(pr) = −1

(2)

where ι(pr) is the signal label, and Pvote(pc) is the percentage
of votes achieved by pc. The entity reconciliation informa-
tion is represented by the product of PF(pr, pc), ι(pr) and
IS (pr, pc), as Eq. 3 shows.

ERI(pr, pc) = PF(pr, pc) · ι(pr) · IS (pr, pc) (3)

Reference positive pairs Rp can be considered to have a
distribution of the Euclidean norm of their pair vectors. pc

tends to be matched, if it appears to be more similar to Rp.
We leverage the novelty detection model [22] to achieve the
distribution. Its core idea is to construct a rough, close fron-
tier which describes the contour of the distribution of these
existing observations (e.g., pairs in Rp). If a pair pc is far
from the frontier, then pc is non-matched with a higher prob-
ability, and vice versa. For pc, this model outputs D(pc) (i.e.,
the distance between pc and the frontier). D(pc) has the fol-
lowing semantics. (i) If D(pc) is negative (resp. positive), it
means that pc is likely to be non-matched (resp. matched).
(ii) If pc achieves a larger |D(pc)|, the prediction has higher
confidence.

Accumulative Entity Reconciliation Information. We de-
fine the reconciliation measure, as an accumulative entity rec-
onciliation information AERI(R, pc), which is the combina-
tion of D(pc) and ERI(R, pc) according to Eq. 4.

AERI(R, pc) = (1 − α) ∗ n(D(pc)) + α ∗ n(ERI(R, pc)) (4)

where ERI(R, pc) is the mean of ERI(pr, pc) over pr ∈ R,
α is a weight which stands for the percentage of ERI(R, pc)
in AERI(R, pc), and n(x) is the normalization function which
first changes all distances of inconsistent pairs between -10

and 10, and then transforms certain distance into a probability
of 0 to 1.
Example 3 As shown in Table 3, Pc is
{p7,7, p8,8, p9,8, p8,10, p12,11, p13,13}, and R is
{p1,1, p2,2, p3,4, p4,5, p5,4, p6,6}. Given d(v(p7,7), v(p1,1)) =
1.32 and Pvote(p1,1) = 0.67, according to Eq. 1, the influence
strength of p1,1 over p7,7 (i.e., IS (p1,1, p7,7)) is 0.42. As p1,1

is in Rp, we can obtain ι(p1,1) = 1, PF(p7,7, p1,1) = 0.33
and ERI(p1,1, p7,7) = 0.14, according to Eqs. 2–3. Giv-
en α= 52.5%, n(D(p7,7)) = 0.8, ERI(p1,1, p7,7) = 0.14,
ERI(p2,2, p7,7) = 0.26, ERI(p3,4, p7,7) = 0.3,
ERI(p4,5, p7,7) = −0.35, ERI(p5,4, p7,7) = −0.39, and
ERI(p6,6, p7,7) = −0.37, we get AERI(R, p7,7) = 0.51,
according to Eq. 4. �

4.1 K-neighbor Influence Algorithm

Our reconciliation algorithm KIA is to deal with inconsistent
pairs one by one, leveraging the reference pairs and previous-
ly resolved inconsistent pairs. It takes as input Pc, the neigh-
bor number of pc k, the weight α, the ratio of non-matched
to matched pairs in R Ratio, pair vectors V, and the results of
individual methods I. It returns a set of matched pairs M and
a set of non-matched pairs M. We present the procedure of
KIA as follows.

As shown in Algorithm 1, KIA first initializes R by
getRefPairs and a key-value structure H (lines 1–12). Then
it evokes compDis to compute D(pc), and considers conflict-
ed pairs to be non-matched according to a matching con-
straint (lines 14–16) through getConflictPairs. There are
three types of ER [23]: Clean-Clean ER, Dirty-Clean ER
and Dirty-Dirty ER. Our work focuses on Clean-Clean ER.
It contains a matching constraint (i.e., each record r1,i ∈ D1

may matches one or zero record r2, j ∈ D2). And then, it re-
solves retained inconsistent pairs in Pc (lines 17–39) by evok-
ing procedures doubleTopKNeighbor (line 20), compAERI
(line 21), selectMaxAERI (line 24), isSatisCon (line 25),
and relatedPairs (line 28) sequentially. It resolves at least
one inconsistent pair in each iteration. It terminates when no
inconsistent pair exists in Pc. Finally, it outputs M and M.
Procedures. Now, we present related procedures as follows.

getConflictPairs Given Rp, Pc, and I, it returns all con-
flicted pairs Pv. If records of p in Pc, are involved in Rp, p is
a conflicted pair.

doubleTopKNeighbor Given pc, k, Rn ∪Rp, and H, it finds
out the top k reference positive and negative pairs w.r.t. pc

(i.e., Rp
k and Rn

k), according to the Euclidean distances in H.
H is a key-value structure, which is computed via matrix op-



6
Yaoli XU et al. GL-RF: A Reconciliation Framework for Label-free Entity Resolution

Algorithm 1: KIA

input : Pc, k, α, Ratio V, I
output: M, M

1 R← getRefPairs(I,Ratio);
2 for pi ∈ R ∪ Pc do
3 for p j ∈ Pc do
4 if pi , p j then
5 v(pi)← getPairVec(pi,V);
6 v(p j)← getPairVec(p j,V);
7 d ← ∥v(pi), v(p j)∥ ;
8 H← H ∪ {((pi, p j), d)};
9 end

10 end
11 end
12 Rn,Rp ← split(R) ;
13 D← compDis(V,Rp, Pc) ;
14 Pv ← getConflictPairs(Rp, Pc, I) ;
15 Pc ← Pc − Pv;
16 M ← M ∪ Pv ;
17 while Pc , ∅ do
18 Md ← ∅;
19 for pc ∈ Pc do
20 Rp

k , Rn
k ← doubleTopKNeighbor(pc, k, Rn ∪ Rp,

H) ;
21 AERI ← compAERI(Rp

k , Rn
k , pc, α, D, I) ;

22 Md ← Md ∪ {(pc, AERI)};
23 end
24 p∗, AERI∗ ← selectMaxAERI(Md, Pc) ;
25 if AERI∗ > 0.5 and isSatisCon(p∗,Rp) then
26 M ← M ∪ {p∗};
27 Rp ← Rp ∪ {p∗};
28 C ← relatedPairs(p∗, Pc) ;
29 M ← M ∪ C;
30 Rn ← Rn ∪ C;
31 else
32 M ← M ∪ {p∗};
33 Rn ← Rn ∪ {p∗};
34 end
35 if C , ∅ then
36 Pc ← Pc − C;
37 end
38 Pc ← Pc − {p∗} ;
39 end

erations and efficient in the query operation. Given pi and p j,
their Euclidean distance is the value of the key (pi, p j) in H.

compAERI Given Rp
k , Rn

k , pc, α, D, and I, it is to compute
AERI(Rp

k ∪ Rn
k , p

c) according to Eq. 4.

selectMaxAERI Given Md which contains AERI of incon-
sistent pairs in Pc, it is to select an inconsistent pair p∗, which

has the highest value of AERI in Pc denoted by AERI∗.
isSatisCon Given p∗ and Rp, if a pair p in Rp, involves

any record of p∗, it returns False, and True otherwise. False
means that it is unnecessary to deal with p∗, and p∗ is non-
matched, since one record of p∗ has already achieved its
match in p. True means that there is no record involved in
both Rp and p∗, so p∗ needs to be processed.

relatedPairs Given p∗ which is predicted to be matched,
and all retained inconsistent pairs Pc, it is to find out all relat-
ed pairs throughout Pc, that contain some overlapped record
of p∗.
Example 4 As shown in Table 3, Rp is {p1,1, p2,2, p3,4}, Rn is
{p4,5, p5,4, p6,6}, and Pc is {p7,7, p8,8, p9,8, p8,10, p12,11, p13,13}.
After initialization, we get H and Pv = ∅. Consider k = 3
and α = 52.5%. In the first iteration, assuming that p8,8 is
with the highest value of AERI (e.g., AERI(Rp

3 ∪ Rn
3, p8,8) =

0.58), we can get p∗ = p8,8. As p8,8 satisfies the con-
straint (isSatisCon(p8,8,Rp) = True), we predict p∗ to be
matched. Then we compute related pairs w.r.t. p∗ and get
C = {p8,10, p9,8}, as compared with p8,8 = (r1,8, r2,8), p8,10

contains the overlapped record r1,8 and p9,8 contains r2,8. And
then we predict pairs in C to be non-matched. Finally, we up-
date M = {p8,8}, M = {p8,10, p9,8}, Rp = {p1,1, p2,2, p3,4, p8,8},
Rn = {p4,5, p5,4, p6,6, p8,10, p9,8}, and Pc = {p7,7, p12,11, p13,13}.
In the second iteration, assuming that p7,7 is with the highest
value of AERI (e.g., AERI(Rp

3 ∪ Rn
3, p7,7) = 0.51), we pre-

dict it to be matched according to AERI(Rp
3 ∪ Rn

3, p7,7) >
0.5 and isSatisCon(p7,7,Rp) = True. Because there is
no conflict pair, we only update M = {p8,8, p7,7}, Rp =

{p1,1, p2,2, p3,4, p8,8, p7,7} and Pc = {p12,11, p13,13}. In the third
iteration, assuming p12,11 is with the highest value of AERI
(e.g., AERI(Rp

3 ∪ Rn
3, p12,11) = 0.49), we predict it to be

non-matched, since AERI(Rp
3 ∪ Rn

3, p12,11) ≤ 0.5. There is
no necessary to compute the related pairs as it does not in-
voke any conflict. Finally, we update M = {p9,8, p8,10, p12,11},
Rn = {p4,5, p5,4, p6,6, p8,10, p9,8, p12,11}, and Pc = {p13,13}. In
the final iteration, assuming AERI(Rp

3 ∪ Rn
3, p13,13) = 0.44

and isSatisCon(p13,13,Rp) = True, we predict it to be non-
matched, and update M = {p9,8, p8,10, p12,11, p13,13}, Rn =

{p4,5, p5,4, p6,6, p8,10, p9,8, p12,11}, and Pc = ∅. As Pc is emp-
ty, KIA terminates, and we get M = {p8,8, p7,7} and M =

{p12,11, p8,10, p9,8, p13,13} �
Theorem 1 Given inconsistent pairs Pc and reference pairs
R, Algorithm KIA runs in O(|R ∪ Pc| · |Pc| + |Pc|2) time.
Proof As shown in Algorithm 1, the time-consuming opera-
tions are (i) computing AERI of pc, which mainly includes
the distance calculation (line 7), and (ii) the search operation
(line 20) which aims to find Rp

k and Rn
k . For ease of discus-
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sion, we view each distance calculation as a cost unit, and
each search operation as the same cost unit. According to
lines 2–11, the distance calculation takes O(|R ∪ Pc| · |Pc|)
times. From lines 17–39, there are at most |Pc| iterations,
as there is at least one inconsistent pair to be resolved dur-
ing each iteration. The time required for line 20 is O(|Pc|2).
Thus, the time complexity of KIA is O(|R ∪ Pc| · |Pc| + |Pc|2).
As once an inconsistent pair is resolved to be matched, the re-
lated pairs are generated and Pc becomes smaller. In practice,
the time for line 20 is far less than |Pc|2. �

5 Experimental Results

In this section, we present comprehensive experiments using
four real-world data sets, to demonstrate the effectiveness in
terms of Recall, Precision, and F-score and scalability of our
strategy. We evaluated (i) the effectiveness of our incremental
entity resolution approach (KIA), comparing with individual
and baseline methods, (ii) the impact of different weights,
the ratio of non-matched to matched pairs among reference
pairs, the number of neighbor reference pairs w.r.t. inconsis-
tent pairs, and (iii) the scalability of KIA with the data size.

5.1 Experimental Setting

Environment. We used ubuntu 16.04 64 bit as the operating
system and python 2.7 as the runtime environment. All exper-
iments were conducted on a machine with a 2.50GHz Intel(R)
Core(TM) i7-4710MQ processor and 16 GB of RAM.
Evaluation Measures. We use Recall, Precision, and
F-score to measure the effectiveness of our method. The
ground truth is composed of all truly matched pairs, denot-
ed as pairsT . The positive pairs are those predicted to be
matched, denoted as pairsP. The truly positive pairs are kind
of pairs, which are correctly predicted to be matched, denoted
as pairsT P.

Recall is the ratio of truly positive pairs to the truly
matched pairs, i.e., Recall = #pairsT P

#pairsT
.

Precision is the ratio of the truly positive pairs to the pos-
itive pairs, i.e., Precision = #pairsT P

#pairsP
.

F-score, short for the balanced F-score, is the harmon-
ic mean of Recall and Precision, i.e., F-score = 2 ·
Recall·Precision
Precision+Recall .

Notice that, we define the global (or local) evaluation mea-
sures (i.e., the aforementioned measures on the entire data (or
inconsistent pairs)), so as to facilitate comparison. The main
reason is that individual and baseline methods have different

objectives. Individual methods aim to conduct an entity res-
olution task from scratch, so it is convenient to employ the
global ones in comparison with these methods. While the
baseline methods and KIA only resolve inconsistent pairs, so
it is fair to evaluate their effectiveness on the local ones. We
applied the local ones in most cases.
Data Sets. We conducted comprehensive experiments using
four real-world data sets 1) in bibliographic or e-commerce
domains, exploited in existing literature [2, 5, 23]. We de-
scribe these data sets as follows.

1. AB, short for Abt-Buy, consists of two relational tables
(i.e., Abt and Buy). Both of them present elaborate prod-
uct information (e.g., name, description, and so on). We
only leveraged name and description.

2. AG, short for Amazon-GoogleProducts, consists of two
relational tables (i.e., Amazon and GoogleProducts).
Like AB, it contains product information, and two at-
tributes (i.e., name and description) are employed.

3. DA, short for DBLP-ACM, consists of two relational ta-
bles (i.e., DBLP and ACM). Both of them are biblio-
graphic and involve four attributes (i.e., title, authors,
venue, and year). We only leveraged authors and title.

4. DS, short for DBLP-Scholar, consists of two relational
tables (i.e., DBLP and Scholar). Like DA, it contains the
same attributes and we only leveraged authors and title.

Algorithms. We compared our method with individual meth-
ods (i.e., distance-based [5], rule-based, and cluster-based
[10] methods). The distance-based method (Distance) is a
state-of-the-art entity resolution algorithm and we fortunately
got its source code. Its basic idea is first to map each pair into
a point of the feature space based on similarities on matching
fields, and then compute the centrifuge distance of pairs, rank
pairs by their distances, and finally regard pairs that satisfy
the matching constraint as matched ones. We also general-
ize the record-matching rule (RR) proposed by [4], through
assigning a weight to each record matching rule, denoted as
gRR. These weights are specified by domain experts in ad-
vance to quantify the importance of gRR. We implement-
ed a rule-based method (Rule), which computes the summed
weight of gRRs that each candidate pair follows, and then
judges pairs that satisfy the matching constraint as matched
ones. The cluster-based method (Cluster) is offered by Febr-
l [10]. Its basic idea is to convert each pair into a vector us-
ing field comparison functions, and then exploit a K-Means

1) These data sets are available at http://dbs.uni-leipzig.
de/en/research/projects/object_matching/fever/
benchmark_datasets_for_entity_resolution.



8
Yaoli XU et al. GL-RF: A Reconciliation Framework for Label-free Entity Resolution

Table 5 Comparison with Individual Methods (top values are shown in bold)

Method Recall(%) Precision(%) F-score(%)
AB AG DA DS AB AG DA DS AB AG DA DS

Distance 79.03 64.23 98.02 95.36 80.73 61.31 95.78 87.61 79.87 62.77 96.90 91.32
Rule 74.84 58.15 97.84 93.15 76.73 59.06 95.52 85.58 75.77 58.60 96.67 89.21
Cluster 34.55 26.69 97.75 87.71 33.81 23.32 85.39 65.75 34.17 24.89 91.15 75.16
KIA 78.21 61.38 98.29 96.04 88.00 63.99 97.81 91.64 82.82 62.66 98.05 93.79

method for clustering pairs into match/non-match groups.
We also compared with three baseline algorithms: the ma-

jority voting strategy (MVote), the weighted voting strategy
(WVote), and a learning-based approach (Learning). MVote
[8] is the most popular method. It is to calculate the vot-
ing number of a pair, and makes a conclusion that a pair is
matched if the pair obtains more than half of the entire votes.
WVote takes the voting weight into consideration. It prefers
to extract matched pairs with the highest summed weight of
votes. Learning uses the support vector classifier (SVC). It
first regards consistent pairs as the training set, and inconsis-
tent pairs as the test set, and then classifies inconsistent pairs
into match/non-match groups. As AB, AG, DA and DS are
Clean-Clean data sets, for fair comparison, we impose the
matching constraint on the output of baseline methods.

5.2 Experimental Results

We performed six sets of experiments and reported the ex-
perimental results: (i) in the first set of experiments, we p-
resented the effectiveness of our approach KIA, comparing to
individual methods (i.e., Distance, Rule and Cluster); (ii) we
evaluated our algorithm, comparing with traditional baseline
approaches (i.e., MVote, WVote and Learning) in the second
set of experiments; (iii) in the third set of experiments, we an-
alyzed the influence of different weights on the effectiveness
of KIA; (iv) we also assessed the effect of the neighbor num-
ber k (resp. the ratio of non-matched to matched pairs among
reference pairs Ratio) on the quality of our approach in the
fourth (resp. fifth) set of experiments; and (v) in the last set
of experiments, we presented the scalability of KIA with both
the number of reference pairs and that of inconsistent pairs.

5.2.1 Comparison with Individual Methods

Among the first set of experiments, we show that our ap-
proach KIA can improve the quality of individual methods,
by taking reference pairs R into consideration. For KIA, we
assigned 1 to Ratio, 3 to k, 52.5% to α, and leveraged three
individual methods. The experimental results on AB, AG, DA
and DS have been reported in Table 5. We make the following

observations. (i) KIA can improve Precision, with a slight de-
cline in Recall or F-score on occasion. For AB, Precision of
KIA was improved by 54.19%, 11.27% and 7.27%, compared
with that of Cluster, Rule and Distance. On AG, Precision of
KIA was 40.67%, 4.93% and 2.68% more than that of Cluster,
Rule and Distance respectively. On DA, the improvemen-
t reached 12.42%, 2.29% and 2.03% in terms of Precision.
Similarly for DS, the improvement reached 25.89%, 6.06%
and 4.03%. Compared with Recall and F-score of Distance,
those of KIA slightly decreased over AG, because the entity
match task on AG is quite challenging. The improvement on
DA is limited because all of individual methods on DA have
already achieved very high Precision, which verifies KIA can
maintain the results of individual methods. (ii) KIA can im-
prove individual algorithms in terms of F-score and Recall in
most cases, even in contrast to Distance with the best effec-
tiveness among individual methods. Although there is slight
decline of Recall over AB in contrast to that of Distance,
F-score of KIA is still improved. All in all, KIA not on-
ly significantly outperforms individual methods in terms of
Precision, but also improves their F-score and Recall in most
cases.

5.2.2 Comparison with Baseline Methods

To the best of our knowledge, we are the first to study how to
combine off-the-shelf methods to enhance their performance
via an unified framework for entity resolution. So, in the sec-
ond set of experiments, we considered MVote, WVote and
Learning as baseline methods, and contrasted their effective-
ness with that of KIA. The experimental results on AB, AG,
DA and DS, as shown in Table 6, have uncovered the follow-
ing. (i) KIA significantly outperforms these baseline meth-
ods in either Precision or Recall. Compared to Precision of
MVote, WVote and Learning, that of KIA on AB (resp. DA)
increased by 2.5% (resp. 14.27%), 5.21% (resp. 7.74%),
and 28.21% (resp. 32.22%). Similarly, for AG (resp. DS),
Recall of KIA increased by 7.84% (resp. 4.87%), 9.98%
(resp. 11.36%), and 76.75% (resp. 8.92%). (ii) KIA may
occasionally have a lower Recall or Precision than baseline
methods. For instance, on DA, Learning had a higher Recall,
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Table 6 Comparison with Baseline Methods (top values are shown in bold)

Method Recall(%) Precision(%) F-score(%)
AB AG DA DS AB AG DA DS AB AG DA DS

MVote 84.22 70.76 68.32 80.54 82.49 66.58 55.20 61.57 83.35 68.60 61.06 69.79
WVote 81.32 68.62 49.50 74.05 79.78 63.04 61.73 68.33 80.54 65.71 54.95 71.08
Learning 68.12 1.85 75.25 76.49 56.78 19.70 37.25 38.66 61.93 3.39 49.84 51.36
KIA 86.63 78.60 65.35 85.41 84.99 64.67 69.47 63.33 85.81 70.96 67.35 72.73
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Fig. 2 Effect of Different Weights (α), #Neighbors (k) and Ratio

while on AG, MVote had a higher Precision. However, all of
F-score on data sets increased.

5.2.3 Effect of Different Weights

We conducted a set of experiments to analyze the effect of dif-
ferent weights on KIA, and reported the results in Figs. 2(a)–
2(d). We varied the weight α from 49.0% to 55.0%. We
observed the following. (i) On most of data sets, the effec-
tiveness of our method increased as α increased. As Figs.
2(a), 2(c) and 2(d) shown, Recall, Precision and F-score in-
creased in the beginning. However, for AG they went smooth-
ly with subtle variations in Fig. 2(b). (ii) When αwent around
52.5%, our method achieved a better performance in most
cases, and we regarded it as our default setting. For exam-

ple, on DA and DS, our method achieved better results with
α = 52.5%, and there were decreases in terms of Precision
and F-score, when α was greater than 52.5% in Figs. 2(c)
and 2(d).

5.2.4 Effect of the Neighbor Number

In this set of experiments, we evaluated the impact of the
neighbor number w.r.t. an inconsistent pair on our proposed
method (KIA). As Figs. 2(e)–2(h) described, with the neigh-
bor number (k) varying from 1 to 18, the results of KIA show
the following observations. (i) Experimentally, setting k to 3
is better than others, and we adopted it as our default setting.
There are two reasons for this. Firstly, letting k = 1 is unsta-
ble. F-scores of AB, AG, and DA in the setting with k = 1,
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were lower than those in other settings (e.g., k = 3) , while
F-score of DS with k = 1 was higher than that of k = 3. Sec-
ondly, other settings (e.g., k = 12 on AB) may obtain certain
better F-score. However, their increments are quite limited,
and the computation cost is higher than that of the case with
k = 3, as the more neighbors mean that the more calculations
are required. (ii) Utilizing more neighbors does not necessar-
ily bring more remarkable benefits, and sometimes evaluation
measures may decrease as k increases. For instance, Fig 2(e)
and 2(f) demonstrated that the measures (Recall, Precision,
and F-score) of KIA, might increase slightly, but did not ob-
tain obvious improvement, with k varying from 3 to 18. In
some case, both F-score and Precision on DA (or DS) had
slight decline as shown in Figs. 2(g) and 2(h).

5.2.5 Effect of different Ratio

In this set of experiments, we evaluated the impact of Ratio
on KIA and varied it from from 0.5 to 3.0. As Figs. 2(i)–
2(l) illustrated, the experimental results reveal the following.
(i) All of measures (e.g., Recall) vary markedly on different
data set. For example, on DS, they first increased as ratio in-
creased, and then decreased quickly, while on AG, they went
smoothly. (ii) KIA with Ratio = 1 achieves better effective-
ness for most data sets, and Ratio = 1 was our default setting.
The reason was the following. Firstly, when Ratio was 1, KIA
always performed as well as Ratio = 0.5, but R was balanced.
Secondly, other settings (e.g., Ratio = 2.5 on DA) may bring
some improvement, but they also incur additional costs such
as more distance computation.
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Fig. 3 Scalability on DS

5.2.6 Scalability Evaluation

The last set of experiments showed the scalability of KIA with
both the number of reference pairs, denoted as |R|, and the
number of inconsistent pairs, denoted as |Pc|. In the first case,
we fixed |R| = 600, and varied |Pc| from 200 to 1,600, as
shown in Fig 3(a). In the second case, we fixed |Pc| = 600,

and varied |R| from 400 to 3,200, as shown in Fig 3(b). The
scalability evaluation on DS shows the following. (i) Our ap-
proach scales quadratically with the number of inconsistent
pairs. (ii) Our approach approximately scales linearly with
the number of reference pairs. Once an inconsistent pair is
resolved, some related pairs are removed, and the execution
time is reduced. However, the number of related pairs de-
pends on Pc and R, so there are some variations in Figs. 3(a)–
3(b). All of observations are consistent with Theorem 1.

6 Conclusion and Future work

In this paper, we made the first step to combine a variety of
individual methods to improve the efficiency of ER tasks. We
proposed an unified generic framework to employ the con-
sistent pairs, in which we implemented an incremental entity
reconciliation algorithm to address all inconsistent pairs. The
extensive experiments have shown that our method outper-
forms individual methods and baseline methods. Notice that,
our method is suitable for the case where quality is more ur-
gent than efficiency, because it achieves higher quality at the
expense of a little efficiency.

For future work, we would like to extend our approach to
support more kind of constraints and provide more efficient
algorithms. We also want to extend the proposed method to
meet the need of some applications that cover multiple types
of entities.
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