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Abstract

The state-of-the-art solutions for Aspect-Level Sentiment Analysis (ALSA) are built on a variety of deep neural
networks (DNN), whose efficacy depends on large amounts of accurately labeled training data. Unfortunately, high-
quality labeled training data usually require expensive manual work, and are thus not readily available in many real
scenarios. In this paper, we aim to enable effective machine labeling for ALSA without the requirement for manual
labeling effort. Towards this aim, we present a novel solution based on the recently proposed paradigm of gradual
machine learning. It begins with some easy instances in an ALSA task, which can be automatically labeled by the
machine with high accuracy, and then gradually labels the more challenging instances by iterative factor graph infer-
ence. In the process of gradual machine learning, the hard instances are gradually labeled in small stages based on
the estimated evidential certainty provided by the labeled easier instances. Our extensive experiments on the bench-
mark datasets have shown that the performance of the proposed approach is considerably better than its unsupervised
alternatives, and also highly competitive compared to the state-of-the-art supervised DNN techniques.

Keywords: Gradual machine learning, Factor graph inference, Aspect-level sentiment analysis

1. Introduction

Aspect-level sentiment analysis [1], a fine-grained classification task, is highly valuable to both consumers and
companies because it can provide the detailed opinions expressed towards certain aspects of an entity. In the litera-
ture [2], the task of aspect-level sentiment analysis (ALSA) has been classified into two finer subtasks, aspect-term
sentiment analysis (ATSA) and aspect-category sentiment analysis (ACSA). ATSA aims to predict the sentiment po-
larity associated with the explicit aspect terms appearing in the text. ACSA instead deals with both explicit and
implicit aspects. In ACSA, an aspect term may not explicitly appear in the text. However, it needs to predict the
sentiment polarities of all the pre-specified aspects in a review. For instance, consider the running example shown
in Table 1, in which Ri and S i j denote the review and sentence identifiers respectively. The review R2 expresses the
opinions about a laptop from two aspects, battery and performance. The goal of ATSA is to predict the sentiment
polarity toward the aspect battery; while the goal of ACSA is to identify the polarity of both aspects even though the
aspect term of performance does not appear in the text. In this paper, we target both ATSA and ACSA.

The state-of-the-art techniques for aspect-level sentiment analysis were mainly built on a variety of DNN mod-
els [2, 3, 4]. Compared with previous learning models [5, 6], they can effectively improve classification accuracy
by automatically learning multiple levels of representations from data. However, their efficacy depends heavily on
large amounts of accurately labeled training data. Unfortunately, high-quality labeled data usually require expensive
manual work, and are thus not readily available in many real scenarios. To address the limitation resulting from
such dependence, this paper presents a novel solution based on the recently proposed paradigm of gradual machine
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Table 1: A Running Example from Laptop Reviews

Ri S i j Text

R1
S 11 I like the battery that can last long time.
S 12 However, the keyboard sits a little far back for me.

R2
S 21 The laptop has a long battery life.
S 22 It also can run my games smoothly.

learning [7]. Inspired by the gradual nature of human learning, which is adept at solving problems with increasing
hardness, gradual machine learning begins with some easy instances in a task, which can be automatically labeled by
the machine with high accuracy, and then gradually reasons about the labels of the more challenging instances based
on the observations provided by the labeled instances.

As pointed out in [7, 8], even though there already exist many learning paradigms for a variety of classification
tasks, including transfer learning [9], lifelong learning [10], curriculum learning [11], and self-training learning [12]
to name a few, the following two properties of gradual machine learning make it fundamentally different from the
existing learning paradigms:

• Distribution misalignment between easy and hard instances in a task. The scenario of gradual machine learning
does not satisfy the i.i.d (independent and identically distributed) assumption underlying most existing machine
learning models: the labeled easy instances are not representative of the unlabeled hard instances. The distribu-
tion misalignment between the labeled and unlabeled instances renders most existing learning models unfit for
gradual machine learning.

• Gradual learning by small stages in a task. Gradual machine learning proceeds in small stages. At each stage,
it typically labels only one instance based on the evidential certainty provided by the labeled easier instances.
The process of iterative labeling can be performed in an unsupervised manner without requiring any human
intervention.

The major contributions of this paper can be summarized as follows:

• We propose a novel solution for ALSA based on the paradigm of gradual machine learning, which can enable
effective machine labeling without the requirement for manual labeling effort. We have presented the detailed
techniques for the three steps laid out in the paradigm, which include easy instance labeling, common feature
extraction and influence modeling, and scalable gradual inference.

• We have empirically evaluated the performance of the proposed solution by a comparative study. Our evaluation
results have shown that its performance is considerably better than the unsupervised alternatives, and also highly
competitive compared to the state-of-the-art supervised DNN techniques.

The rest of this paper is organized as follows: Section 2 reviews related work. Section 3 defines the task of ALSA
and provides a paradigm overview of gradual machine learning. Section 4 proposes the technical solution for ALSA.
Section 5 presents the scalable solution of gradual inference for ALSA. Section 6 empirically evaluates the efficacy
of the proposed approach. Finally, we conclude this paper with Section 7.

2. Related work

Machine Learning Paradigms. There exist many machine learning paradigms proposed for a wide variety of clas-
sification tasks. Here, our intention is not to exhaustively review all the work. We will instead briefly review those
closely related to the paradigm of gradual machine learning used in this paper and discuss their difference.

Traditional machine learning algorithms make predictions on the future data using the statistical models that are
trained on previously collected labeled or unlabeled training data [13, 14, 15, 16]. In many real scenarios, the labeled
data may be too few to build a good classifier. Semi-supervised learning [17, 18, 19] addresses this problem by
making use of a large amount of unlabeled data and a small amount of labeled data. Nevertheless, the efficacy of
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both supervised and semi-supervised learning paradigms depends on the i.i.d assumption. Therefore, they can not be
applied to the scenario of gradual machine learning.

In contrast, transfer learning [9], allows the distributions of the data used in training and testing to be different. It
focused on using the labeled training data in a domain to help learning in another target domain. The other learning
techniques closely related to transfer learning include lifelong learning [10] and multi-task learning [20]. Lifelong
learning is similar to transfer learning in that it also focused on leveraging the experience gained on the past tasks for
the current task. However, different from transfer learning, it usually assumes that the current task has good training
data, and aims to further improve the learning using both the target domain training data and the knowledge gained
in past learning. Multi-task learning instead tries to learn multiple tasks simultaneously even when they are different.
A typical approach for multi-task learning is to uncover the pivot features shared among multiple tasks. However,
all these learning paradigms can not be applied for the scenario of gradual machine learning. Firstly, focusing on
unsupervised learning within a task, gradual machine learning does not enjoy the access to good labeled training data
or a well-trained classifier to kick-start learning. Secondly, the existing techniques transfer instances or knowledge
between tasks in a batch manner. As a result, they do not support gradual learning by small stages on the instances
with increasing hardness within the same task.

The other closely related machine learning paradigms include curriculum learning (CL) [11] and self-paced learn-
ing (SPL) [21]. Both of them are similar to gradual machine learning in that they were also inspired by the learning
principle underlying the cognitive process in humans, which generally start with learning easier aspects of a task, and
then gradually takes more complex examples into consideration. However, both of them depend on a curriculum,
which is a sequence of training samples essentially corresponding to a list of samples ranked in ascending order of
learning difficulty. A major disparity between them lies in the derivation of the curriculum. In CL, the curriculum
is assumed to be given by an oracle beforehand, and remains fixed thereafter. In SPL, the curriculum is instead dy-
namically generated by the learner itself, according to what the learner has already learned. Based on the traditional
learning models, both CL and SPL depend on the i.i.d assumption and require good-coverage training examples for
their efficacy. In contrast, the scenario of gradual machine learning does not satisfy the i.i.d assumption. It instead
aims to eliminate the dependency on good-coverage training data.

Online learning [22] and incremental learning [23] have also been proposed for the scenarios where training
data only becomes available gradually over time or its size is out of system memory limit. Based on the traditional
learning models, both online learning and incremental learning depend on high-quality training data for their efficacy.
Therefore, they can not be applied for gradual learning either.

Work on Aspect-level Sentiment Analysis. Sentiment analysis at different granularity levels, including document,
sentence, and aspect levels, has been extensively studied in the literature [24]. The early work for aspect-level sen-
timent analysis [6, 5] focused on traditional machine learning algorithms. Unfortunately, the performance of these
traditional techniques depends heavily on the quality of the features, which usually have to be manually crafted.

Since deep neural networks can automatically learn high-quality features or representations, most recent work at-
tempted to adapt such models for aspect-level sentiment analysis. The existing work can be divided into two categories
based on the two finer subtasks of ATSA and ACSA. For ATSA task, Dong [25] initially proposed an Adaptive Recur-
sive Neural Network (AdaRNN) that can employ a novel multi-compositionality layer to propagate the sentiments of
words towards the target. Noticing that the models based on recursive neural network heavily rely on external syntac-
tic parser, which may result in inferior performance, many works subsequently focused on recurrent neural networks.
Tang [26] developed a target-dependent LSTM (TD-LSTM) model to capture the connection between target words
and their contexts. The alternative solutions include memory networks and convolutional neural networks. Wang [27]
proposed Target-sensitive Memory Networks that can capture the sentiment interaction between targets and contexts.
Li [28] presented Transformation Networks that employ a CNN layer to extract salient features from the transformed
word representations originated from a bi-directional RNN layer. Due to the great success of attention mechanism
in image recognition [29], speech recognition [30], machine translation [31, 32] and question answering [33], many
models based on LSTM and attention mechanism have also been proposed. These models, including Hierarchical
Attention Network [34], Segmentation Attention Network [35], Interactive Attention Networks [36], Recurrent At-
tention Network [37], Attention-over-Attention Neural Networks [38], Effective Attention Modeling [39], Content
Attention Model [40], Multi-grained Attention Network [41], employed different attention mechanisms to output the
aspect-specific sentiment features.

3



Table 2: Frequently used notations.

Notation Description
ti = (r j, sk, al) an aspect unit
r j a review
sk a sentence
al an aspect category or aspect term
T = {ti} a set of aspect units

In comparison, there exist fewer works for ACSA because the implicit aspects make the task more challenging.
Ruder [4] proposed a hierarchical bidirectional LSTM for the ACSA task by modeling the inter-dependencies of
sentences in a review, which does not fully employ the given aspect. Wang [3] presented an attention-based LSTM
that employs an aspect-to-sentence attention mechanism to concentrate on the key part of a sentence given an aspect.
Xue [2] introduced a model based on convolutional neural networks and gating mechanisms, which is more accurate
and efficient. Note that the models proposed for ACSA can also be used for ATSA, but the ones for ATSA usually
solely benefit themselves because they usually employ specific components to model explicit aspect-term together
with its relative context.

Unfortunately, the efficacy of the aforementioned DNN-based approaches depends heavily on good-coverage train-
ing data, which may not be readily available in many real scenarios.

3. Preliminaries

In this section, we first define the task of aspect-level sentiment analysis, and then provide a paradigm overview
of gradual machine learning.

3.1. Task Statement
For presentation simplicity, we have summarized the frequently used notations in Table 2. Formally, we formulate

the task of aspect-level sentiment analysis as follows:

Definition 1. [Aspect-level Sentiment Analysis] Let ti = (r j, sk, al) be an aspect unit, where r j is a review, sk is a
sentence in the review r j, and al is an aspect associated with the sentence sk. Note that the aspect al can be a aspect
category or aspect term, and a sentence may express opinions towards multiple aspects. Given a corpus of reviews,
R, the goal of the task is to predict the sentiment polarity of each aspect unit ti in R.

In this paper, we suppose that an aspect polarity is either positive or negative.

3.2. Paradigm overview
The paradigm of gradual machine learning, as shown in Figure 1, consists of the following three steps:

• Easy Instance Labeling. Given a classification task, it is usually very challenging to accurately label all the
instances in the task without good-coverage training examples. However, the work can become much easier if
we only need to automatically label some easy instances in the task. In real scenarios, easy instance labeling
can be performed based on the simple user-specified rules or the existing unsupervised learning techniques.
For instance, in unsupervised clustering, an instance close to the center of a cluster in the feature space can
be considered as an easy instance, because it has only a remote chance to be misclassified. Gradual machine
learning begins with the observations provided by the labels of easy instances. Therefore, high accuracy of
automatic machine labeling on easy instances is critical for its ultimate performance on a given task.

• Feature Extraction and Influence Modeling. Features serve as the medium to convey the knowledge obtained
from the labeled easy instances to the unlabeled harder ones. This step extracts the common features shared
by the labeled and unlabeled instances. To facilitate effective knowledge conveyance, it is desirable that a wide
variety of features are extracted to capture as much information as possible. For each extracted feature, this step
also needs to model its influence over the labels of its relevant instances.
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Figure 1: Learning Paradigm Overview.

• Gradual Inference. This step gradually labels the instances with increasing hardness in a task. Since the sce-
nario of gradual learning does not satisfy the i.i.d assumption, gradual learning is fulfilled from the perspective
of evidential certainty. As shown in Figure 1, it constructs a factor graph, which consists of the labeled and
unlabeled instances and their common features. Gradual learning is conducted over the factor graph by iterative
inference. At each iteration, it chooses to label the unlabeled instance with the highest degree of evidential
certainty. The iteration is repeatedly invoked until all the instances in a task are labeled. In gradual inference, a
newly labeled instance at the current iteration would serve as an evidence observation in the following iterations.

4. Solution for ALSA

In this section, we present the solution of gradual machine learning for ALSA. We will present the respective
techniques for the three steps laid out in Subsection 3.2.

4.1. Easy Instance Labeling
The existing lexicon-based approaches essentially reason about polarity by summing up the polarity scores of all

the sentiment words in a sentence. The score of a sentiment word indicates its intensity of sentiment, which increases
with the absolute value of score. Since negation words can effectively reverse the polarity of a sentiment word,
they usually perform negation detection for each sentiment word by examining whether there is any negation in its
neighboring words [42].

Unfortunately, the existing lexicon-based approaches [43] are prone to error under some ambiguous circumstances.
Firstly, the presence of contrast (e.g. but and although), hypothetical (e.g. if ) or condition (e.g. unless) connectives
could significantly complicate polarity detection. Secondly, the presence of negation words involving long-distance
dependency could also make the detection challenging. Finally, a sentence may contain multiple sentiment words that
hold conflicting polarities; in this case, the true polarity of a sentence is not easily detectable based on sentiment word
scoring.

Therefore, we define an easy instance by excluding the aforementioned ambiguous circumstances as follows:

Definition 2. [Easy Instance] We consider an aspect polarity as an easy instance if and only if the sentence express-
ing opinions about the aspect simultaneously satisfies the following three conditions:

• It contains at least one sentiment word, but does not simultaneously contain any sentiment word holding a
conflicting polarity;
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• It does not contain any contrast, hypothetical or condition connective;

• It does not contain any negation word involving long-distance dependency.

The polarity of an easy instance is simply determined by the polarity of its sentiment words. Moreover, a negation
word is supposed to involve long-distance dependency if and only if it is not in the neighboring 3-grams preceding
any sentiment word. We illustrate the difference between the easy and challenging instances by Example 1.

Example 1. [Easy Instances] In a phone review, the sentence “the screen is not good for carrying around in your
bare hands ”, expressing opinion about “screen”, is an easy instance because the sentiment word “good” associated
with the local negation cue “not” strongly indicates the negative sentiment. In contrast, the sentence “I don’t know
why anyone would want to write a great review about this battery”, expressing opinions about “battery”, is not an
easy instance. Even though it contains the strong sentiment word “great”, it also includes the negation word “don’t”
involving long-distance dependency. Similarly, the sentence “I like this laptop, the only problem is that it can not
last long time” is not an easy instance, because it contains both the positive and negative words (e.g. “like” and
“problem”).

4.2. Feature Extraction and Influence Modeling
We extract two types of features for influence modeling: word feature and relational feature.

Word Feature. We extract sentiment words, which are specified in open-source lexicons, from sentences and consider
them as features of aspect polarities. To capture more information shared among aspect instances, we also extract k-
grams (k ≥ 2) as the word features besides the single sentiment word. Since negation words can effectively reverse the
polarity of a sentiment word [44, 45], we perform negation detection for each sentiment word by examining whether
there is any negation in its neighboring words. Note that a sentence may express opinions towards multiple aspects. In
this case, firstly, we employ the dependency-based parse tree [46] to extract all the pairs of opinion target and opinion
word [47], and assign an opinion word to an aspect if either itself or its opinion target is close to the aspect in the
vector space (namely their similarity is less than a threshold (e.g. 0.5)). Secondly, we extract the opinion phrases
towards an aspect based on its opinion words, and assign the k-gram features contained in the opinion phrases to the
aspect.

Relational Feature. The sentences in a review build upon each other. There often exist some discourse relations
between clauses or sentences, which can provide valuable hints for polarity reasoning. Specifically, it can be observed
that two sentences connected with a shift word usually have opposite polarities. In contrary, two neighboring sentences
without any shift word between them usually have similar polarities. In the running example shown in Table 1, the
polarities of S 11 and S 12 are opposite because they are connected by the shift word of “but”, while the polarities of
S 21 and S 22 are similar due to the absence of any shift word between them.

Therefore, we employ the rules to extract the similar and opposite relations between aspect polarity based on
sentence context. Given two aspect units ti = {ri, si, ai} and t j = {r j, s j, a j} that are opinioned in the same review
(namely ri = r j), the rules for polarity relations extraction are as follows:

• If the sentences si and s j are identical (si=s j) or adjacent and neither of them contains any shift word, ti and t j

are supposed to hold similar polarities;

• If two adjacent sentences si and s j are connected by a shift word and neither of them contains any inner-sentence
shift word, ti and t j are supposed to hold opposite polarities;

• If the sentences si and s j are identical and the opinion clauses associated with them are connected by a inner-
sentence shift word, ti and t j are supposed to hold opposite polarities.

Note that given an ATSA task, it is easy to identify the opinion clause because the aspect term explicitly appears
in the text. Therefore, the 3rd rule can be easily checked in the scenario of ATSA. The scenario of ACSA is instead
more challenging. Our solution first uses the dependency-based parse tree to extract all the pairs of opinion phrases,
and associates an opinion clause with a specific aspect if either its opinion target or opinion word is close to the aspect
in the vector space.
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Figure 2: Factor Graph for the Running Example.

4.3. Gradual Inference
To enable gradual learning, we construct a factor graph, G, in which the labeled easy instances are represented by

the evidence variables, the unlabeled hard instances by the inference variables, and the features by the factors. The
value of each variable represents its corresponding polarity. An evidence variable has the constant value of 0 or 1,
which indicate the polarity of negative and positive respectively. The values of evidence variables remain unchanged
during the inference process. The values of the inference variables should instead be inferred based on G. The factor
graph constructed for the running example is shown in Figure 2.

Gradual machine learning is attained by iterative factor graph inference on G. In G, we define the probability
distribution over its variables V by

Pw(V) =
1

Zw

∏
v∈V

∏
f∈Fv

φ f (v)
∏
f ′∈F′

φ f ′ (vi, v j), (1)

where Fv denotes the set of word features associated with the variable v, F′ denotes the set of relational features, φ f (v)
denotes the factor associated with v and f , and φ f ′ (vi, v j) denotes the factor associated with the relational feature f ′.
In Eq. 1, the factor of a word feature f is defined by

φ f (vi) =

{
1 vi = 0;
ew f vi = 1; (2)

where vi denotes a variable having the feature f , and w f denotes the weight of f . Similarly, the factor of a relational
feature f ′ is defined by

φ f ′ (vi, v j) =

{
ew f ′ i f vi = v j;
1 otherwise; (3)

where vi and v j denote the two variables sharing the feature f ′, and w f ′ denotes the weight of f ′.
As in [7, 8], given a factor graph with some labeled evidence variables, we reason about the factor weights by

minimizing the negative log marginal likelihood of

ŵ = arg min
w
−log

∑
VI

Pw(Λ,VI), (4)

where Λ denotes the observed labels of evidence variables and VI denotes the set of inference variables. The objective
function effectively learns the factor weights most consistent with the label observations of the evidence variables.

As usual, gradual inference proceeds in small stages. At each stage, it chooses to label the unlabeled variable with
the highest degree of evidential certainty in G. The iteration is repeatedly invoked until all the inference variables are
labeled. In gradual inference, evidential certainty is measured by the inverse of entropy. Formally, entropy is formally
defined by

H(v) = −(P(v) · lnP(v) + (1 − P(v)) · ln(1 − P(v))), (5)

in which H(v) denotes the entropy of a variable v.
In our implementation, we use the Numbskull library 1 to optimize this objective function by interleaving stochas-

tic gradient descent steps with Gibbs sampling ones, similar to contrastive divergence. However, repeated inference
by maximum likelihood over a large-sized factor graph is usually time-consuming [48]. Therefore, in the next section,
we will present a scalable solution for gradual inference on ALSA.

1https://github.com/HazyResearch/numbskull
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Algorithm 1: Scalable Gradual Inference

1 while there exists any unlabeled variable in G do
2 V ′ ← all the unlabeled variables in G;
3 for v ∈ V ′ do
4 Measure the evidential support of v in G;
5 end
6 Select top-m unlabeled variables with the most evidential support (denoted by Vm) ;
7 for v ∈ Vm do
8 Approximately rank the entropy of v in Vm;
9 end

10 Select top-k most promising variables in terms of entropy in Vm (denoted by Vk) ;
11 for v ∈ Vk do
12 Compute the probability of v in G by factor graph inference over a subgraph of G;
13 end
14 Label the variable with the minimal entropy in Vk;
15 end

5. Scalable Gradual Inference

The scalable solution is built based on the framework proposed in [8]. It consists of three steps, measurement of
evidential support, approximate ranking of entropy and construction of inference subgraph. Its efficacy depends on
the following observations:

• Many unlabeled inference variables in the factor graph are only weakly linked through the factors to the evidence
variables. Due to the lack of evidential support, their inferred probabilities would be quite ambiguous, i.e. close
to 0.5. As a result, only the inference variables that receive considerable support from the evidence variables
need to be considered for labeling;

• With regard to the probability inference of a single variable v in a large factor graph, it can be effectively ap-
proximated by considering the potentially much smaller subgraph consisting of v and its neighboring variables.
The inference over the subgraph can usually be much more efficient than over the original entire graph.

The process of scalable gradual inference for ALSA is sketched in Algorithm 1. It first selects the top-m unlabeled
variables with the most evidential support in G as the candidates for probability inference. To reduce the invocation
frequency of factor graph inference, it then approximates entropy estimation by an efficient algorithm on the m candi-
dates and selects only the top-k most promising variables among them for factor graph inference. Finally, it infers the
probabilities of the chosen k variables in G. For each variable, its probability is not inferred over the entire graph of
G, but over a potentially much smaller subgraph.

5.1. Measurement of Evidential Support

Our solution for measuring evidential support is built based on the Dempster-Shafer (D-S) theory [49]. Given an
inference variable, we first estimate the evidential support provided by each of its factors, and then aggregate them to
measure its overall evidential support.

First, we describe how to estimate the evidential support provided by a single factor. Formally, let X be the
universal set representing all possible states of a system under consideration. By a function of basic belief assignment,
the D-S theory assigns a belief mass to each element of the power set of X. The mass of an element E, denoted by
m(E), expresses the proportion of all relevant and available evidence that supports the claim that the actual state
belongs to E but to no particular subset of E. The masses of elements satisfy∑

E∈2X

m(E) = 1 & m(∅) = 0. (6)
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In case that only singleton propositions are assigned belief masses, a mass function reduces to a classical probability
function.

For evidential support measurement, we define two propositions: “label the instance”, denoted by L, and “unlabel
the instance, denoted by U. With X = {L,U}, the power set of X can be represented by 2X = {∅, L,U, X}. Given an
inference variable v and its word feature f , we estimate the evidential support provided by f by the mass function

m f (E) =


(1 − d f ) · max{P( f ), 1 − P( f )} E = {L},
(1 − d f ) · min{P( f ), 1 − P( f )} E = {U},
d f E = {L,U},

(7)

where d f denotes the degree of uncertainty of f , and P( f ) denotes the proportion of positive instances among all
labeled instances having the feature f . According to Eq. 7, the mass assigned to the element of {L} increases as the
value of P( f ) becomes more extreme (i.e. close to 0 or 1). The underlying intuition is that the more extreme the value
of P( f ) is, the more evidential support the element of {L} should receive from the feature f .

Similarly, given an inference variable v and its relational feature f ′, we estimate the evidential support provided
by f ′ by the mass function

m f ′ (E) =


(1 − d f ′ ) · R( f ′) E = {L},
(1 − d f ′ ) · (1 − R( f ′)) E = {U},
d f ′ E = {L,U},

(8)

where d f ′ denotes the degree of uncertainty of f ′, and R( f ′) denotes the accuracy of the relation f ′. In Eq. 8, R( f ′)
can be considered as the statistical accuracy of the extracted relations, and the evidential support the element of {L}
receives from f ′ increases with the estimated accuracy.

Next, we describe how to measure the aggregate evidential support provided by multiple factors. Suppose that an
inference variable v has i word features, { f1,. . ., fi}, and j relational features, { f ′1 ,. . ., f ′j }. Given the element of E = {L},
we estimate its aggregate evident support by combining the estimated masses as follows

m(E) = m f1 (E) ⊕ · · · ⊕ m fi (E) ⊕ m f ′1 (E) ⊕ · · · ⊕ m f ′j (E), (9)

where m(E) denotes the total amount of evidential support v receives, and the combination is calculated from the two
sets of mass functions, m f1 (E) and m f2 (E), in the following manner

m f1 (E) ⊕ m f2 (E) =
1

1 − K

∑
E′∩E′′=E

m f1 (E′) · m f2 (E′′), (10)

where E′ and E′′ denote the elements of the power set, and

K =
∑

E′∩E′′=∅

m f1 (E′) · m f2 (E′′), (11)

which is a measure of the amount of conflict between E′ and E′′.
Note that the degree of uncertainty, denoted by d f and d f ′ in Eq. 7 and 8 respectively, indicates how much impact

a feature has on the whole degree of belief in terms of evidential support measurement. The lower the value, the
greater the impact. It can be observed that relational features can usually provide more reliable information than word
features. In practical implementation, we suggest that d f ′ is set to be smaller than d f (e.g., d f = 0.4 and d f ′ = 0.1).
Our empirical evaluation in Subsection 6.3 has shown that the performance of gradual machine learning is, to a large
extent, insensitive to the parameter setting of d f and d f ′ .

5.2. Approximate Ranking of Entropy
Since more evidential conflict means more status uncertainty, we approximate the entropy ranking of inference

variables by measuring their evidential conflict. Similar to the case of evidential support measurement, we define
two propositions: “label it as positive”, denoted by L+, and “label it as negative”, denoted by L−. Given an inference
variable v and its word feature f , we approximate v’s evidential certainty w.r.t f with the mass function

m∗f (E) =


(1 − d∗f ) · P( f ) E = {L+},

(1 − d∗f ) · (1 − P( f )) E = {L−},
d∗f E = {L+, L−},

(12)
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where d∗f denotes the degree of uncertainty of f , and P( f ) denotes the proportion of positive instances among all the
labeled instances having the feature f .

Similarly, given an inference variable v and its relational feature f ′, we approximate v’s evidential certainty w.r.t
f ′ with the mass function

m∗f ′ (E) =


(1 − d∗f ′ ) · P( f ′) E = {L+},

(1 − d∗f ′ ) · (1 − P( f ′)) E = {L−},
d∗f ′ E = {L+, L−},

(13)

where d∗f ′ denotes the degree of uncertainty of f ′, and P( f ′) denotes the probability of v being positive if only the
evidence f ′ is considered for labeling v. If the labeled variable on the other side of the relation f ′ is positive, we set
P( f ′) = ew f ′

1+ew f ′ , in which w f ′ denotes the weight of f ′; otherwise (it is negative), we set P( f ′) = 1
1+ew f ′ .

Finally, we measure the amount of conflict between the multiple pieces of evidence using the generalized expres-
sion of K as specified in Eq. 11. Similar to the case of evidential support measurement, we suggest that d∗f ′ is set to be
a lower value than d∗f . Our empirical evaluation in Subsection 6.3 has shown that the performance of gradual machine
learning is, to a large extent, insensitive to the parameter setting of d∗f and d∗f ′ .

5.3. Construction of Inference Subgraph
It has been empirically shown [50] that given a variable v in G, its probability inference can be effectively approx-

imated by considering the subgraph only consisting of v and its r-hop neighboring variables, and even with a small
value of r (e.g. 2 and 3), the approximation can be sufficiently accurate in many real scenarios. Therefore, given a
target inference variable v in G, we first extract all its 2-hop neighbors reachable by the relational factors and include
them in the subgraph. For each word feature of v, all the labeled and unlabeled instances sharing the feature with v
are also included in the constructed subgraph because their labels may play important roles in labeling v through the
common word feature.

6. Empirical Evaluation

In this section, we empirically evaluate the performance of the proposed solution by a comparative study. We com-
pared GML with the state-of-the-art methods proposed for both ACSA and ATSA. For the ACSA task, the alternative
techniques include:

• LEX-SYN [51]. It is an unsupervised approach built on lexicons and syntactic dependency analysis;

• H-LSTM [4]. It is an enhanced DNN technique. It models the inter-dependencies of sentences in a review
using a hierarchical bidirectional LSTM;

• AT-LSTM [3]. Referring to the Attention-based LSTM, it employs an attention mechanism to concentrate on
the key parts of a sentence given an aspect, where the aspect embeddings are used to determine the attention
weights;

• ATAE-LSTM [3]. Referring to the Attention-based LSTM with Aspect Embedding, it is supposed to be an
improvement over AT-LSTM. It extends AT-LSTM by appending the input aspect embedding into each word’s
input vector.

• GCAE [2]. It is a model based on convolutional neural networks and gating mechanisms that can selectively
output the sentiment features accordingto a given aspect.

For the ATSA task, besides LEX-SYN, AT-LSTM, ATAE-LSTM and GCAE, the alternative techniques also in-
clude:

• IAN [36]. Referring to the interactive attention network, it can interactively learn attentions in the contexts and
targets and generate the representations for targets and contexts separately;

• RAM [37]. It is a multiple-attention network that can effectively capture sentiment features separated by a long
distance, and is usually more robust against irrelevant information;
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Table 3: Accuracy Comparison for ACSA on Benchmark Datasets

Model PHO16 CAM16 LAP16 RES16 LAP15 RES15
LEX-SYN 67.11% 74.64% 68.18% 73.74% 70.97% 71.07%
H-LSTM 73.30% 78.80% 78.90% 83.10% 80.00% 77.10%
AT-LSTM 72.40% 81.70% 76.03% 85.03% 81.03% 77.25%
ATAE-LSTM 74.48% 83.36% 79.07% 84.66% 80.68% 79.13%
GCAE 77.69% 83.78% 80.42% 87.45% 82.26% 80.28%
GML 76.16% 81.46% 80.40% 85.37% 83.82% 78.78%

• AOA [38]. Referring to the attention-over-attention network, it models aspects and sentences in a joint way and
can explicitly capture the interaction between aspects and context sentences;

• TNet [28]. It is a target-specific transformation network taht can better integrate target information into the
word representations.

The rest of this section is organized as follows: Subsection 6.1 describes the experimental setup; Subsection 6.2
presents the comparative evaluations results; Subsection 6.3 evaluates the performance sensitivity of the proposed
solution w.r.t various parameters.

6.1. Experimental Setup
In the empirical evaluation, we have used six benchmark datasets in four domains (phone, camera, laptop and

restaurant) and two languages (English and Chinese) from the SemEval 2015 task 12 [52] and 2016 task 5 [53]. In
all the experiments, we perform 2-class classification to label an aspect polarity as positive or negative. Note that
the datasets of LAP16, RES16, LAP15 and RES15 contain some neutral instances, which are simply ignored in our
experiments. There are no labeled aspect terms in the Chinese datasets of PHO16 and CAM16. Therefore, for ATSA,
we only compare GML to its alternatives on the English datasets.

For DNN models, we used Glove embeddings 2 for English data, and word embeddings from Baidu 3 for Chinese
data. We employed jieba 4 to tokenize Chinese sentences. In easy instance labeling and feature extraction for GML, we
used the open-source Opinion Lexicon 5 for English data, and employ EmotionOntology 6 and BosonNLP 7 lexicons
for Chinese data. For easy instance identification, the scores for sentiment words in Chinese lexicon are normalized
into the range of [-4, 4], and we use the sentiment words whose scores are at least 1. In the process of scalable
gradual inference for ALSA, if none of the unlabeled instances receives any evidential support from the labeled easier
instances, GML employs the existing unsupervised method [51] to label its polarity. Note that in our implementations
of GML, the initial weights of word features, similar relational features and opposite relational features are set to 0, 2
and -2 respectively.

All the reported results are the averages over ten runs. Our implementation codes have been made open-source
available at the website8.

6.2. Comparative Evaluation
In comparative evaluation, we set m=20, k=3, d f =d∗f =0.4, and d f ′=d∗f ′=0.1 for GML. The detailed evaluation

results for both ACSA and ATSA are presented in Table 3 and 4 respectively. The best result achieved on each dataset
is also highlighted in the table.

We can see that GML consistently outperforms the unsupervised alternative, LEX-SYN, by considerable margins
on all the benchmark datasets. For ACSA, the improvement margins on PHO16, CAM16 and RES15 are around 7-9%;

2https://nlp.stanford.edu/projects/glove/
3http://pan.baidu.com/s/1jIb3yr8
4https://github.com/fxsjy/jieba
5https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
6http://ir.dlut.edu.cn/EmotionOntologyDownload
7https://bosonnlp.com/dev/resource
8http://www.wowbigdata.com.cn/GML-ALSA/GML-ALSA.html
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Table 4: Accuracy comparison for ATSA on benchmark datasets.

Model LAP16 RES16 LAP15 RES15
LEX-SYN 68.28% 80.97% 68.78% 65.80%
AT-LSTM 74.85% 84.43% 77.51% 75.43%
ATAE-LSTM 75.08% 84.60% 77.66% 74.13%
GCAE 78.34% 88.86% 81.37% 77.60%
IAN 74.02% 85.12% 79.27% 75.00%
RAM 77.47% 85.81% 78.58% 73.23%
AOA 74.94% 87.02% 80.73% 73.43%
TNet 75.86% 87.20% 80.00% 75.20%
GML 78.62% 85.93% 80.89% 79.84%

the margins on LAP16, RES16 and LAP15 are the largest at more than 10%. For ATSA, it achieves the improvement of
more than 10% on three out of totally four datasets (namely LAP16, LAP15 and RES15). Due to the widely recognized
challenge of sentiment analysis, the achieved improvements can be deemed very considerable.

Furthermore, it can be observed that the performance of GML is highly competitive compared to the supervised
DNN techniques. Except GCAE, GML achieves overall better performance than all the other DNN models. For
instance, for ACSA, GML beats AT-LSTM in performance on five out of totally six datasets; it also beats ATAE-
LSTM in performance on four out of the six datasets, and their performance on RES15 is very close. For ATSA, GML
achieves the best performance on two out of totally four datasets; except GCAE, it outperforms all the other DNN
model on at least three out of the four datasets. Even compared to GCAE, GML beats it in performance on LAP15
for ACSA, and LAP16 and RES15 for ATSA, and their performance on the other datasets are close. It is worthy to
point out that unlike the DNN models, GML does not use any labeled training data provided in the benchmark. These
experimental results evidently demonstrate the efficacy of GML.

6.3. Sensitivity Evaluation

Table 5: Sensitivity evaluation over ACSA task.

w.r.t m
(k = 3)

PHO16 CAM16 LAP16 RES16 LAP15 RES15

m = 10 75.91% 81.54% 79.95% 83.93% 84.24% 79.39%
m = 20 76.16% 81.46% 80.40% 85.37% 83.82% 78.78%
m = 30 76.26% 81.25% 80.08% 84.79% 83.94% 79.47%
m = 40 75.61% 80.96% 80.08% 84.76% 84.03% 79.11%

w.r.t k
(m = 20)

k = 1 77.28% 81.58% 79.95% 84.99% 83.06% 79.81%
k = 3 76.16% 81.46% 80.40% 85.37% 83.82% 78.78%
k = 5 75.69% 80.91% 77.90% 85.11% 82.97% 79.08%
k = 7 75.92% 80.54% 80.05% 85.08% 83.16% 78.69%

w.r.t d f ′

and d f
(m = 20
k = 3)

d f ′ d f PHO16 CAM16 LAP16 RES16 LAP15 RES15

0.1 0.2 76.60% 81.25% 79.81% 82.91% 84.22% 79.64%
0.1 0.3 76.67% 80.79% 79.76% 84.53% 83.96% 78.64%
0.1 0.4 76.16% 81.46% 80.40% 85.37% 83.82% 78.78%
0.2 0.3 76.45% 80.91% 79.73% 84.82% 84.08% 78.97%
0.2 0.4 76.41% 81.08% 79.89% 84.59% 84.01% 78.72%
0.2 0.5 76.26% 81.41% 79.81% 85.05% 84.12% 79.69%
0.3 0.4 75.95% 80.96% 79.79% 84.62% 83.99% 78.92%
0.3 0.5 76.22% 80.91% 80.16% 85.25% 83.64% 78.58%
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In sensitivity evaluation, we first vary the values of the parameters m and k as shown in Algorithm 1, which
respectively denote the number of candidate variables selected for approximate entropy ranking and the number of
candidate variables selected for factor graph inference. We set m=10, 20, 30, 40, and k=1, 3, 5, 7. We then vary the
values of the parameters, d f , d f ′ , d∗f and d∗f ′ , which denote the degree of uncertainty of word and relational features.
We set d f =d∗f , d f ′ = d∗f ′ , and d f ′ < d f <= 0.5. While evaluating GML’s sensitivity to a particular parameter, any other
parameter is fixed to the same value.

The detailed evaluation results on ACSA are presented in Table 5. Note that the evaluation results on ATSA are
similar, thus omitted here. It can be observed that the performance of GML only fluctuate slightly (≤ 1% in most
cases) with different parameter settings. It is worthy to note that the performance of GML does not tend to change
much with various values of m and k. Since most of GML’s runtime is spent on factor graph inference, reducing the
value of k can effectively improve efficiency. Our experiments show that even with k taking the minimal value of
1, the performance of GML only changes marginally. We also have the similar observation on the parameter setting
of d f and d f ′ . Various value combinations of d f and d f ′ can only result in very marginal performance fluctuations.
Our experimental results clearly show that the performance of GML is, to a large extent, insensitive to the parameter
settings. They bode well for its applicability in real scenarios.

7. Conclusion

In this paper, we have proposed a novel paradigm of gradual machine learning and developed a corresponding so-
lution for the task of ALSA. Our empirical study on the benchmark datasets has validated the efficacy of the proposed
approach. Using ALSA as a test case, we have demonstrated that gradual machine learning is a promising paradigm.

Future work can be pursued on several fronts. Since GML does not require labeled training data, additional
corpora of reviews can be potentially integrated into the inference process for improved performance. Detailed study
on this topic is beyond the scope of this paper, but it deserves an independent investigation. It is also interesting to
develop solutions of gradual machine learning for other challenging classification tasks requiring extensive labeling
effort.
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