
POOLSIDE: An Online Probabilistic Knowledge Base for
Shopping Decision Support

Ping Zhong, Zhanhuai Li, �n Chen, Yanyan Wang, Lianping Wang,
Murtadha HM Ahmed, Fengfeng Fan

School of Computer Science Northwestern Polytechnical University
127 West Youyi Road, Xian,P.R.China, 710072

zhongping@mail,lizhh@,chenbenben@,wangyanyan@mail,wanglp@mail,a.murtadha@mail,fanfengfeng@mail.
nwpu.edu.cn

ABSTRACT
We present POOLSIDE, an online PrObabilistic knOwLedge base
for ShoppIng DEcision support, that provides with the on-target
recommendation service based on explicit user requirement. With a
natural language interface, POOLSIDE can answer question in real-
time. We present how to construct the knowledge base and how to
enable real-time response in POOLSIDE. Finally, we demonstrate
that Poolside can give high-quality product recommendations with
high e�ciency.(�e demo video can be accessed via the link:h�ps:
//www.youtube.com/watch?v=D8ALi11CUcc)

CCS CONCEPTS
•Mathematics of computing→Probabilistic reasoning algorithms;
•Information systems →Decision support systems; Online shop-
ping;

KEYWORDS
knowledge base, decision support system, markov logic network

1 INTRODUCTION
�e existing shopping decision support systems [2] focus on prod-
uct price comparison or product recommendation based on user’s
past shopping behaviors. Unfortunately, none of them provides
with the on-target service that can recommend products based on
explicit user requirements. �e challenge of providing such service
results from the observation that the user-speci�ed requirements
may involve not only the basic a�ributes of products but their multi-
aspect and more obscure concepts. For instance, a user may ask the
system to recommend a mobile phone priced around 500$ and with
high performance. �e concept of high performance is composite
and obscure. It should be evaluated on various factors including
memory size, CPU frequency and number, and most importantly,
the user comments. To this end, we propose an online knowledge
base, denoted by POOLSIDE, that can support real-time decision
making. POOLSIDE provides a natural language interface and uses
Deepdive [3], the state-of-the-art KB tool, to facilitate reasoning
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’17, November 6–10, 2017, Singapore.
© 2017 ACM. ISBN 978-1-4503-4918-5/17/11. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3132847.3133168

KBC

Product 
Attributes CommentsProduct 

Relationship

QP

Query Transformation

Execution Planning

CR

Grounding

Offline Inference

G
U

I

Raw data

Data Structuralization

Web Data

Natural 
Language 

Query

Answer

Answer RetrievalProduct 
Concepts

Weight 
Module

Rule      
Module

Online 
Inference

Knowledge 
Retrieval

Data 
Fusion

Aspect 
Analysis 

Figure 1: System Overview

about obscure concepts. POOLSIDE is an ongoing project. Our
major contributions can be summarized as follows:

• We develop the demo system POOLSIDE that can rec-
ommend products based on explicit user requirement in
real-time. We outline the major challenges of building
POOLSIDE, concept reasoning and real-time response, and
present the corresponding solutions in Section 4 and 5;

• We demo how POOLSIDE interacts with users and pro-
vides high-quality product recommendations with high
e�ciency; (Section 6)

• Based on our experience with POOLSIDE, we identify two
future directions for the research on probabilistic knowl-
edge base. (Section 7)

2 SYSTEM OVERVIEW
Figure 1 gives an overview of the POOLSIDE system. It represents
all knowledge facts by �rst-order relations, which are stored in
relational databases (Postgresql in our demo). It consists of three
components, Knowledge Base Construction (KBC), Concept Rea-
soning (CR) and�ery Processing (QP).

KBC extracts data from Web and transforms them into struc-
tured data. It has a data fusion module that can merge product
informations from di�erent sources. It also contains an aspect
analysis module that performs aspect and sentimental analysis on
natural language comments. CR is responsible for reasoning about
obscure product concepts. It is built on the KB tool Deepdive and
provides a rule module and a weight module to facilitate rule de�ni-
tion and rule weight se�ing respectively. QP transforms a natural
language question into a SQL query and retrieves answers from the
knowledge base in real-time.

Demonstration CIKM’17, November 6-10, 2017, Singapore

2559

https://www.youtube.com/watch?v=D8ALi11CUcc)
https://www.youtube.com/watch?v=D8ALi11CUcc)


Extraction Data Fusion

 
 

First-Order 
Transformation

Figure 2: Basic Product Information Extraction

Word2Vec Transformation Aspect Extraction& 
Sentiment Analysis

User1:
The app  works  not 
fluently.
User2:
It's a good mobile for 
running fast. It also 
has a amazing price. 
User3:...

Word: fast
Vector:-0.29, -0.23...-
0.008
Word: Amazing
Vector:-0.01, ,0.23
Word: price 
Vector:0,-0.12,...0.13
Word: battery life 
Vector:0,0.02,...0.51
                 .

 

First-Order 
Transformation

Figure 3: Aspect Analysis on Comments

3 KNOWLEDGE BASE CONSTRUCTION
Knowledge base construction involves processing both basic prod-
uct a�ribute information and user comments. �e work�ow of
processing basic product a�ribute information is presented in Fig-
ure 2.We extract products� data from business website by a crawler
tool BaZhuaYu1. . For each product type, it �rst directly extracts
basic a�ribute values of products (e.g. price and memory size of
a mobile phone) from di�erent e-commerce Web pages and then
merges them into a uni�ed relational data. It also extracts product
relationship information (if it exists) for concept reasoning. For
instance, two products are considered to be similar if they are listed
as competing products on a shopping site.

�e work�ow of processing user comments is shown in Figure 3.
Aspect analysis identi�es the product aspect a user comments on
and the sentiment of the comment (positive or negative). Our so-
lution for aspect identi�cation and sentimental analysis are based
on the NLP tool Word2Vec [1] and [4]. It transforms a comment
into a 6-tuple, (Uid,Pid,T,C,W,S), in which Uid and Pid denotes the
identities of user and product respectively, T the time of comment
being submi�ed, C the product aspect commented by user, W the
string of comment keywords, and S the result of sentiment analy-
sis (positive or negative). For example, in Figure 3, the comment
of user2 contains the terms of “running” and “fast”. KBC would
classify the comment into the aspect class of performance and also
understand that the sentiment of the comment is positive.

4 CONCEPT REASONING
To answer the query containing obscure concepts, POOLSIDE treats
these concepts as uncertain �rst-order relations stored in probabilis-
tic knowledge base. It uses Deepdive, a state-of-the-art probabilistic
knowledge base construction tool based on Markov logic network
(MLN), to reason about obscure concepts. Deepdive represents a
MLN by a factor graph and reasons the probabilities of uncertain
knowledge using Gibbs sampling. In Deepdive, factor graph is con-
structed by rules. In the rest of this section, we describe how to
specify the rules and set their weights in POOLSIDE.
1h�p://www.bazhuayu.com/download

4.1 Knowledge Rule Generation
Given a target concept, the rule module generates the rules accord-
ing to a concept reasoning tree, which needs to be speci�ed by users.
A concept reasoning tree is directed, and consists of three types
of nodes, including concept node, a�ribute node and product rela-
tionship node. A concept node corresponds to a product-relevant
concept. An a�ribute node corresponds to a product a�ribute or
user comments. A product relationship node has the target to speci-
�y the relationship between two products. An edge from a parent
to a child means that the evaluation on the child node would have
an impact on the evaluation on the parent node.

An example of concept reasoning tree is shown in Figure 4 (a). Its
root speci�es the target concept that needs to be reasoned, in this
example it is labeled “highPerformance”. �e concept nodes also
include “bigMemory”, “positiveComments” and “fastCPU”. �eir
evaluation would in�uence the evaluation of their parent node
“highPerformance”. �e node of “Similar” is a product relationship
node. �e edge between “highPerformance” and “Similar” dictates
that if two products are similar, high performance on one of them
wouldmean that another one is also of high performance. �e nodes
of “Memory”, “Core”, “Frequency” and “Comments” are a�ribute
nodes. �e edge between “bigMemory” and “Memory” dictates
that a product’s a�ribute value at memory has an impact on the
evaluation of the concept “bigMemory”. It can be observed that
in a concept reasoning tree, an internal node should be a concept
node, and the leaf nodes can be either a�ribute nodes or product
relationship nodes.

�e rule model automatically translates a concept reasoning
tree into a set of rules. An example of the translation is shown in
Figure 4. Each edge in the tree corresponds to a generated rule.
Formally, given an edge between two concept nodes, Ci → Cj , in
which Ci and Cj denote two concepts, its corresponding rule can
be speci�ed byCj (p) → Ci (p), in which p denotes a product ID. An
edge between a concept node and an a�ribute node, Ci → Aj , in
which Aj denotes the label of the a�ribute node, can be translated
into the rule: Aj (p,ak ) → Ci (p), in which ak denotes the a�ribute
value ofp atAj . An edge between a concept node and a product rela-
tionship node, Ci → Rj , in which Ri denotes the relationship label,
is translated into the rule: Ci (pl ),Ri (pl ,pk ) → Ci (pk ). For instance,
in Figure 4, the edge between “highPerformance” and “bigMemory”
corresponds to the rule r1: biдMemory(p) → hiдhPer f ormance(p).
�e edge between “bigMemory” and “Memory” corresponds to the
rule r2: Memory(p,m) → biдMemory(p).

4.2 Rule Weight Tuning
POOLSIDE labels some nodes in a factor graph and then uses the
training mechanism provided by Deepdive to learn the rule weights
in the factor graph. For instance, in the factor graph for reasoning
about performance of mobile phone, it can label some phones as
high performance beforehand according to user comments. Unfor-
tunately, it can be observed that Deepdive was primarily designed
to support reasoning about the knowledges de�ned over string
values, but not numerical values. As a result, the learned weight
assignment may not be consistent with the plain knowledge involv-
ing numerical value comparison. For instance, in Figure 5, the rule
r3, Memory(p, 2GB) → biдMemory(p), has even a lower weight

Demonstration CIKM’17, November 6-10, 2017, Singapore

2560



Concept:
highPerformance(p)
bigMemory(p)
positiveComments(p)
fastCPU(c)

p  Phone, c   CPU

highPerformance

bigMemory fastCPU

hasFrequency

Similar positive
Comments

hasCore

:Concept :Attributes :Product Relationship

Concept Definition Concept Reasoning Tree Specification Rule generation

hasMemory

r1
r2

r3r8

hasComments

r4
r5

r6
r7

Figure 4: rule module

R7:
hasMemory(p,v)  bigMemory(p)
Weight:f(v)

labels 

machine 
learning Weight 

turning

Figure 5: weight module

than the rule r4, Memory(p, 1GB) → biдMemory(p). However, r3
should have a larger weight than r4 because the memory of 2 GB is
indeed bigger than the memory of 1GB. To overcome the shortcom-
ing of Deepdive’s weigh learning mechanism, we tune the learned
weights such that they satisfy the monotonacity relationship: a
higher a�ribute value would consistently result in be�er (or worse)
evaluation on its corresponding concept. Formally speaking, let
X = {x1 · · · xn } denotes the weight vector sorted by its a�ributes
values(be�er or worse), it tunes each xi ∈ X to x̂i by following
fomula:

x̂i = xi +
i−1∑
j=1

s(x j )x j +
n∑

j=i+1
s(−x j )x j (1)

where s(x) is a signal function where s(x) = 1 if x > 0 and
s(x) = 0 otherwise. In Figure 5, a�er tuning, the weight of the
rule,Memory(p,m) → biдMemory(p), increases with memory size.

5 ENABLING REAL-TIME RESPONSE
�e whole factor graph constructed by Deepdive can be very large
due to the large number of di�erent products. �erefore, probabilis-
tic inference over all the variables in the resulting factor graph is
usually very time-consuming, and unnecessary as well because not
all the products are interesting to users. Even though the technique
of k-hop approximation [5] can be used to speed up inference, it
remains very challenging to simultaneously achieve good-quality
results and real-time response. To address this challenge, we pro-
pose a novel query-driven online inference technique, which can
achieve both good-quality inference results and real-time response
by reusing the inferred values of the variable nodes.

Query Node
n5

f9

f6

f5

f2

f8

f1

f2

x1n1

n3n4

: Uninferred Variables : inferred Variables

f4

f7

f1n6

f7

f3

f3

n2

(a) original factor graph

: Virtual Approximation Factors

fα

fβ

: Factors

Query Node
f2

f1

f2

x1n1

n3

f3

f7

n2

f3

(b) approximation subgraph
Figure 6: Online Inference: An Example

�e online technique labels the nodes whose values have been
inferred as inferred nodes. When a variable node vi has to be in-
ferred as quested by user, it �rst identi�esvi ’s neighbors of inferred
nodes, then creates virtual factor nodes to approximate the in�u-
ence of the factor graph on the inferred nodes, and �nally infers
the probability of vi based on the constructed small graph. An
example of visual factor construction is shown in Figure 6. �e size
of subgraph(Figure 6(b)) is small that can be inferred in real-time.

�e process of online inference consists of three steps: subgraph
extraction, visual factor construction and sugraph inference. Sup-
pose that the original factor graph is denoted by G. �e step of
subgraph extraction searches for the limited-sized subgraph for
reasoning about vi in G. It searches for the k-hop subgraph of ni
in G in a breadth-�rst manner. However, the search process stops
at any inferred node. Suppose that the resulting factor subgraph
is denoted by Gk . �e second step of visual factor construction
constructs a visual approximation factor for each inferred node in
Gk to simulate the inference in�uence of G/Gk on Gk . We denote
the resulting factor subgraph with visual factors as Ĝk . In Ĝk , any
inferred node vj should satisfy

P̂(vj ) = P(vj ) (2)

in which P(vj ) denotes vj ’s inferred probability on G and P̂(vj )
denotes vj ’s inferred probability on Ĝk .

Now we describe how to estimate the weights of inserted visual
factors in Ĝk . Suppose that V denotes the variable set in Gk , m
denotes the number of factors in Gk , and m̂ denotes the number
of inserted visual factors in Ĝk . fi (1 ≤ i ≤ m) denotes the factor
function of a factor in Gk , and f̂j (1 ≤ j ≤ m̂) denotes the factor

Demonstration CIKM’17, November 6-10, 2017, Singapore

2561



function of a visual factor in Ĝk . �e factor function of f̂j corre-
sponds to the variable (node) vj in Ĝk . Note that we have f̂j=1 if
vj=0, and f̂j=ewj if vj=0, wherew j denotes the visual factor weight.
�erefore, for each inferred node vp , the condition speci�ed in
Equation 2 corresponds to the following equation

p(vp ) =
1
Z

∑
V \vp
(
∏
i, j

fi · f ∗j ), 1 ≤ i ≤ m, 1 ≤ j ≤ m̂, (3)

where Z is a normalization constant.
Since there are totally m̂ inferred nodes (visual factors), we have

to solve the equation group consisting of m̂ equations of m̂ order.
It can be observed that the equation group can be easily solved if
the value of m̂ is small. In case that the value of m̂ is large, we also
propose a divide-and-conquer approach to speed up the process
of weight estimation. It �rst splits Ĝk into multiple subgraphs and
then solves their corresponding equation groups independently.

Since the resulting factor subgraph Ĝk is usually small, we can
use exact inference algorithms (belief propagation algorithm in our
demo) in the �nal step of probability inference over Ĝk .

Figure 7: GUI Screenshots

6 DEMONSTRATION PLAN
To construct a mobile phone knowledge base, we use POOLSIDE
GUI to construct the product KB in an interactive way. It �rst runs
KBC module to transform data into �rst order knowledge, and then
let the user to de�ne the concepts and choose its relating knowledge
from existing knowledge �les. A�er that, GUI runs Rule module
to generate knowledge rules according to user’s input and create
factor graph by Deepdive. Finally, GUI demands user to specify the
directory of label data �le and then infers the concepts.

�e query demonstration consists of three parts: query interface,
recommendation and product detail presentation. �e demo will
use the KB system that we have built for the mobile phone products.

Figure 8: Interface Screenshots

�e query interface accepts the user query. �e interface of recom-
mendation lists the products satisfying a user query and orders them
by user-speci�ed a�ributes/concepts. Finally, clicking on products
hyperlinks on the page of recommendation would take you to a new
page detailing its major properties and strengths/weaknesses com-
pared with other popular products. �e results recommended by
POOLSIDE are very similar to what are reported on the professional
mobile phone testing website Zealer2.

7 THOUGHTS ON FUTUREWORK
Our work on POOLSIDE points out two interesting directions for
future research on probabilistic knowledge base. Firstly, the infer-
ence engines of the existing probabilistic KBs are optimized for
text values. �ey are usually clumsy in handling the knowledges
de�ned on numerical value comparisons, which can however be
richly found in real applications. For instance, a phone with a
faster CPU should be considered to have correspondingly higher
performance. Secondly, the reasoning rules in a knowledge base
currently have to be speci�ed by experts beforehand. Automatic
rule detection can greatly reduce human workload and signi�cantly
improve the intelligence of KB systems as well.

ACKNOWLEDGMENTS
�is work is supported by the Ministry of Science and Technol-
ogy of China, National Key Research and Development Program
(Project Number:2016YFB1000703 ), the Natural Science Foundation
of China under Grant No.61332006, No.61672432, No.61472321 and
No.61502390.

REFERENCES
[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient

Estimation of Word Representations in Vector Space. Computer Science (2013).
[2] Bhavik Pathak. 2010. A Survey of �e Comparison Shopping Agent-based

Decision Support Systems. Journal of Electronic Commerce Research 11, 3 (2010),
178–192.

[3] Christopher De Sa, Alex Ratner, Christopher R, Jaeho Shin, FeiranWang, SenWu,
and Ce Zhang. 2016. Incremental knowledge base construction using DeepDive.
Vldb Journal (2016), 1–25.

[4] Dongwen Zhang, Hua Xu, Zengcai Su, and Yunfeng Xu. 2015. Chinese comments
sentiment classi�cation based on word2vec and SVM perf. Expert Systems with
Applications 42, 4 (2015), 1857–1863.

[5] Xiaofeng Zhou, Yang Chen, and Daisy Zhe Wang. 2016. ArchimedesOne: �ery
Processing over Probabilistic Knowledge Bases. Proceedings of the VLDB Endow-
ment 9, 13 (2016).

2h�p://tool.zealer.com/

Demonstration CIKM’17, November 6-10, 2017, Singapore

2562


	Abstract
	1 Introduction
	2 System overview
	3 Knowledge Base Construction
	4 Concept Reasoning
	4.1 Knowledge Rule Generation
	4.2 Rule Weight Tuning

	5 Enabling Real-time Response
	6 Demonstration Plan
	7 Thoughts on Future Work
	Acknowledgments
	References



