
DFA-G: A Unified Programming Model for
Vertex-centric Parallel Graph Processing

Bo Suo∗, Jing Su∗, Qun Chen∗, Zhanhuai Li∗ Wei Pan∗
∗School of Computer Science and Engineering

Northwestern Polytechnical University, Xi’an, China

Email: {caitou.mail,sujingxg.mail,chenbenben,lizhh,panwei1002}@nwpu.edu.cn

Abstract—Many systems have been built for vertex-centric
parallel graph processing. Based on the Bulk Synchronous
Parallel (BSP) model, they execute user-defined operations at
vertices iteratively and exchange information between vertices
by messages. Even though the native BSP systems (e.g. Pregel
and Giraph) execute the operations on vertices synchronously
within an iteration, many other platforms (e.g. Grace, Blogel and
GraphHP) have proposed asynchronous execution for improved
efficiency. However, they also bring about an undesirable side
effect: a program designed for synchronous platforms may
not run properly on asynchronous platforms. In this demo,
we present DFA-G (Deterministic Finite Automaton for Graph
processing), a unified programming model for vertex-centric
parallel graph processing. Built on DFA, DFA-G expresses the
computation at a vertex as a process of message-driven state
transition. A program modeled after DFA-G can run properly on
both synchronous and asynchronous platforms. We demonstrate
how to build DFA-G models using a graphical user interface and
also how to automatically translate them into BSP programs.

I. INTRODUCTION

A wide variety of applications (e.g. social networks and

biological networks) use graphs to represent the entities and

the interactions between them. Due to the massive scale of

these graphs, graph analytics usually have to be performed

in parallel over a cluster of machines. As a result, a lot of

systems based on the classical Bulk Synchronous Parallel

(BSP) model have been built for this purpose. However,

the native BSP implementations (e.g. Pregel [1] and Giraph

[2]) may cause substantial inefficiency due to frequent syn-

chronization and communication among computing nodes.

Therefore, alternative platforms (e.g. Giraph Unchained [3],

Grace [4], Blogel [5], GraphHP [6], Maiter [7] and HAGP

[8]) have been proposed to facilitate asynchronous execution

on BSP programs for improved efficiency. Unfortunately, they

also bring about an undesirable side effect: a BSP program

designed for synchronous platforms may not run properly on

asynchronous platforms.

We illustrate program incompatibility between synchronous

and asynchronous platforms by the example of bipartite match-

ing. The problem of bipartite matching is to find a maximal

matching, in which no additional edge can be added without

sharing an end point, in a bipartite graph. A BSP program on

synchronous platforms [1] implements a four-stage handshake.

In the 1st stage, each unmatched left vertex sends Request
messages to its neighbors to request match. In the 2nd stage,

each unmatched right vertex randomly chooses one of the

Request messages it receives, sends a corresponding Grant
message, and sends Deny messages to other requesters. In
the 3rd stage, each unmatched left vertex chooses one of the

grants it receives and sends a corresponding Accept message.
In the 4th stage, an unmatched right vertex receives the Accept
message and records its corresponding left vertex. Unfortu-

nately, we observe that the program written for synchronous

platforms can not be directly reused on asynchronous ones in

this example. With asynchronous execution, a right vertex may

simultaneously have a Request and an Accept message in its
message queue. The synchronous program however could not

properly handle a hybrid message queue.

Since a BSP program written for synchronous platforms

may not work properly on asynchronous ones, end users may

thus be required to design different parallel algorithms for

different platforms. Therefore, there is a need for a unified

programming model such that a BSP program written ac-

cording to the model can be guaranteed to work properly on

both synchronous and asynchronous platforms. To this aim, we

present this demo. Our major contributions can be summarized

as follows:

• We propose a unified programming model, DFA-G, for

vertex-centric parallel graph processing.

• We demonstrate how to construct DFA-G models using

a graphical user interface.

• We demonstrate how to automatically translate DFA-G

models into runnable BSP programs.

II. SYSTEM OVERVIEW

A. BSP Programming Interface

The BSP data model is a directed graph in which each

vertex is uniquely identified by an identifier. The synchronous

BSP computation consists of a sequence of supersteps. During

a superstep, it invokes a uniform, user-defined function at

each vertex, conceptually in parallel. The function specifies

the behavior at a vertex and a single superstep. To enable

complex computations, BSP systems usually allows users to

define parameters on vertices and edges, whose values can be

updated by vertex function. Programming on BSP platforms

primarily involves defining the function for graph vertices.

On the open-source Giraph platform, users can instruct the

behaviors of vertices in the primary Vertex class. It has

the Compute() method, which specifies the actions taken

2016 IEEE 16th International Conference on Data Mining Workshops

2375-9259/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDMW.2016.169

1328

Graphical User Interface

Model Maintainer

Message Type1

Message Container

Automaton Container

s0 s1 s2

Automaton1

Automaton Scheduler

Model
Converter

C i

Writable Type1

Parameter Container

Action Type1

Action Container

Data

Parser

Fig. 1. System Architecture

at vertices. Compute() can inspect the received messages
via a message iterator and send messages using the method

sendMessage(). It can also query and update the state of
a vertex using the methods getValue() and setValue()
respectively.

On asynchronous platforms, the behaviors of vertices are

usually specified in the conceptually same way. Without the

synchronization barrier between supersteps, the computations

on vertices can however be executed in any order as specified

by default setting or end users.

B. System Architecture

The architecture, as shown in Figure 1, consists of three

components: Graphical User Interface (GUI), Model Main-

tainer (MM) and Model Converter (MC). GUI provides users

with a graphical interface, with which DFA-G models can

be iteratively constructed by simply clicking and dragging.

MM is for managing DFA-G models. It has an automaton

container, a message container, an action container and an

automaton scheduler. Automaton container records the au-

tomatons. Message and action containers record the details of

the messages and actions used in automatons respectively. Au-

tomaton scheduler is responsible for arranging the execution

order of automatons. Finally, MC is responsible for translating

a DFA-G model into a runnable BSP program.

III. THE UNIFIED PROGRAMMING MODEL

A. DFA-G Model

In automata theory, DFA is formally represented by a 5-

tuple, (Q,Σ,Δ, q0, F), where Q denotes a finite set of states,

Σ denotes a finite set of input symbols, Δ denotes a transition

function Δ : Q×Σ → Q , q0 denotes an initial state in Q, and
F denotes a set of final states where F ⊆ Q. To recognize
a sequence of characters over Σ, a DFA starts from state q0
and then transitions from one state to another according to the

given character and its transition function Δ.
We observe that the BSP computation is essentially driven

by messages. It motivates us to express the computation

at a vertex as a process of message-driven state transition.

Formally, DFA-G models vertex computation by a 5-tuple,

(S,M,A, T , s0), in which:

• S denotes a finite set of states that a vertex can be in.

• M denotes a finite set of message types that are ex-

changed between vertices. Message definition may con-

tain updatable parameters. They are usually used to carry

the values that must be transferred between vertices.

• A denotes a finite set of action types that a vertex should

take as a result of state transition.

• T denotes a transition function T : S × M A−→ S . The
function specifies the state transition at a vertex upon

receiving a message and the action it needs to take.

• s0 denotes an initial state of vertices at the beginning of
computation. Note that initially, no message exists in an

automaton. Therefore, in the definition of T , s0 usually
has to make a state transition unconditionally without
being triggered by any message.

Similar to the native DFA, DFA-G incurs state transition

upon receiving a message (except in the initial state s0).
It however assumes that once a vertex completes a state

transition, it becomes inactive. An inactive vertex can only
be reactivated by a new message. Accordingly, in DFA-G, the

state transition at a vertex can terminate at any possible state.

Therefore, the model does not define the set of final states.

Action definition (A) usually involves sending messages to one
or more destination vertices and updating the values of vertex,

edge and message parameters. The values of these parameters

however can not affect the progress of state transition, which

is solely determined by the current state of a vertex and the

type of the message it receives as defined in T .
By expressing vertex computation as a series of message-

driven state transition, DFA-G processes messages in a one-

at-a-time manner without regard to their arrival order. Its

algorithmic correctness is thus independent of the processing

order of messages.

B. Case Study

s0 s1

NULL

Update< >

NULL
value = 1 - d;

= d * value / N(v);
send Update< > to neighbors;

p
if (>)

 value = value + ;

 = d * / N(v);
 send Update< > to neighbors;

Fig. 2. Automaton of PageRank

1) PageRank [9]: The PageRank values of the vertices in
a graph can be computed by the DFA-G model as shown

in Figure 2, in which value represents the PageRank value
of a vertex and N(v) represents its number of outgoing
neighboring vertices. It instructs the iterative computation

process by accumulative updates. Initially, every vertex sets its

PageRank value to (1-d), in which d is a damping factor, sends
Update messages to its neighbors indicating its value update,
and then proceeds to state s1. At state s1, upon receiving an
Update< δ > message, a vertex would update its value by δ. If
the value of δ exceeds a predefined threshold of λ, the vertex
continues to send out Update messages to its neighbors. It
can be observed that if the value of λ are set to be sufficiently

1329

small, the computed PageRank values would converge to their

true values.

sl
0 sl

1 sl
2

sr
0 sr

1 sr
2

Null
send Request<id> to neighbors;

Request<v>Requqq estq v
send Grant<id> to v;

Request<v>Requqq est v
send Deny<id> to v;

Grant<v>
send Accept<id> to v;

Accept<v>Acceptppp v
record v;

Deny<v>y
send Request<id> to v;

Grant<v>
send Deny<id> to v;

Deny<v>y
NULL

(a) A1: Automaton of Left Vertices

(b) A2: Automaton of Right Vertices

Request<v>equq est
NULL

Fig. 3. Automatons of Bipartite Matching

2) Bipartite Matching: The DFA-G model for bipartite

matching is shown in Figure 3, in which the automatons of left

and right vertices are presented by A1 and A2 respectively and

id denotes the identifier of the current vertex. The automatons
instruct a three-stage handshake process. At initialization, each

left vertex sends a Request message to its neighboring right
vertices, and then proceeds to the state s1l waiting for the
responses from right vertices. In s1l , if it receives a Grant
message from a right vertex, it proceeds to the state s2l and
sends an Accept message to the grantor. Otherwise, if it

receives a Deny message from a right vertex, which means the
right vertex is engaged but not matched, it continues to send

a Request message to the right vertex. In s2l , if a matched left
vertex continues to receives a Grant message, it would send a
Deny message to notify the grantor such that the grantor could
accept new matching requests.

In A2, if a right vertex at s
0
r receives a Request message

from a left vertex, it would proceed to s1r and send a Grant
message to the requestor. In s1r , if it receives an Accept
message from a left vertex, it would proceed to the matched

state of s2r and record its matching left vertex. Otherwise, if
it continues to receive Request messages at s1r , it would send
Deny messages to the requestors to notify them of its engaged
state. If it receives a Deny message at s1r , it would transit back
to the state of s0r , which indicates that it is free to accept a
new matching request.
3) Minimum Spanning Tree: The general idea of the MST

algorithm is to iteratively find conjoined-trees in a connected

graph [10]. A conjoined-tree is a directed graph consisting

of the minimum-weight edges of vertices and has two cycled

vertices at its root. The algorithm first finds all the conjoined-

trees in a graph and then fold each of them into a single vertex.

The process is repeated until the entire graph becomes a single

vertex. The minimum spanning tree consists of the edges in

the resulting conjoined-trees.

The automaton of the MST algorithm is shown in Figure. 4.

It instructs the process of constructing and folding conjoined-

trees. In the demo system, the DFA-G model uses automaton

scheduler to instruct iterative execution of the automaton.

The automaton selects the one with smaller ID of two cy-

cled root vertices in a conjoined-tree as supervertex. Each

s0 s1

NullNull
find min-weight e(id, u);

te = e; su = u;

send SQ<id> to su;

s2

SQ<v>QQQQ
if (v = su and v < id)
 send URSV<id> to v;
else send SA<su> to v;

URSV<v>URSV v
send IMSV<id> to v; su = id;

send EQ<id, id> to neighbors;

s3

IMSV<v>
SQ<v>QQQQ
send
IMSV<su>
to v;

EQ<v, s>EQQQQ v, ,v s
if (s su) update edge e(id, s);

send EA<id, id> to v;

SQ<v>SQQ v
send IMSV<id> to v;

EA<v, s>EA v,v s
if (s su) update edge e(id, s);

E<u, v, w, s>E u, , v, ,v w, ,w s
update edge between

id and s using e(u, v)
weighted w;

SA<v>SA v
if (v id) su = v;

send SQ<id> to su;

IMSV v
su = v;

send EQ<id, su>
to neighbors;

EQ<v, s>EQQ v,v s
if (s su)

 send E<id, v, w, s> to su;

 send EA<id, su> to v;

EA<v, s>,
if (s su)

 send E<id, v, w, s> to su;

Vertex Parameter & Message Notations

su
SA

supervertex

SuperAnswer
te treeEdge id vertexID w weight IMSV IAmSuperVertex EQ EdgeQuery
SQ SuperQuery E Edge URSV YouAreSuperVertex EA EdgeAnswer

Fig. 4. Automaton of Minimum Spanning Tree

supervertex corresponds to a conjoined-tree. The messages

of SuperQuery, SuperAnswer, YouAreSupervertex and IAmSu-
pervertex are for supervertex identification. The messages of
EdgeQuery, EdgeAnswer and Edge are for graph folding. More
explanations on the automaton are omitted here due to space

limit.

IV. EVALUATION AND DEMONSTRATION

We have implemented a demo system to generate BSP pro-

grams for the Giraph programming interface by constructing

DFA-G models. It is freely available for all users[11].

Model Construction. Automaton construction primarily con-
sists of the following steps: (1) define vertex variables; (2)

create states and state transitions; (3) define messages and

actions; (4) refine state transitions with the defined messages

and actions. Some algorithms (e.g. BM) may require different

types of vertices to execute different automatons. The system

allows users to specify the type of vertices for an automaton.

For instance, in the BM example, as shown in Figure 5,

AL and AR are the automatons modeled for left and right

vertices respectively. On the interface for automaton scheduler,

users can create directed edges between automatons to control

their execution order. The system allows users to define an

automaton-transition condition on each edge. If there is a cycle

(e.g. in the case of MST), an automaton-transition condition on

one of cycled edges is necessary for the termination for model

execution. All the tasks primarily involve simply clicking and

dragging on the interface. An example of model construction

for BM is demonstrate in Figure 5.

Model Conversion. The process of model conversion

starts with generating the vertex and message classes. The

Compute() function of the vertex class is outlined as two-
level nested if-statements: the first-level if-condition is spec-

ified on vertex state and the second-level one is on message

type. Since a vertex becomes inactive after it completes a state

transition, a voteToHalt() operation is always inserted at
the end of the Compute() function. If different types of ver-
tices are supposed to execute different types of automatons, the

1330

(1) Define vertex variables

(3) Define messages(2) Construct states and state transitions (5) Refine state transitions(4) Define actions

(6) Repeat step (1) (5)(7) Specify vertex types for automatons(8) Define automaton scheduler

ate tran

Fig. 5. Model Construction Workflow

corresponding Compute() function has an additional level
of nested if-statements, whose if-condition checks the vertex

type. The function of automaton scheduler is implemented in

the main() function. Multiple automatons are connected by
a series of if-statements, whose if-conditions correspond to

user-specified automaton-transition conditions. The repeated

invocation of an automation is similarly implemented by a

while-statement.
Performance Evaluation. We demonstrate the performance
of the programs modeled after DFA-G on Giraph, Grace and

GraphHP. On Giraph, we also compare the performance of

the DFA-G programs with that of corresponding synchronous

programs. We have implemented the algorithms for PageRank

and BM, which are run on the open-source Web-Google(of

916,428 vertices, 5,105,039 edges) and Hamrle3(of 1,447,360

vertices, 5,514,242 edges) datasets [12] respectively.
The programs are run on a machine that has the memory

size of 16G, disk storage of 500G and 16 AMD Opteron(TM)

processors of 2.6GHz frequency. The running system has

10 parallel computing nodes. The performance of different

programs is presented in Table. I. It can be observed that

the asynchronous platforms can achieve considerably better

performance than synchronous ones. On Giraph, the asyn-

chronous DFA-G program (Giraph(asyn)) of BM achieves

similar performance to the synchronous one (Giraph(syn)).

The asynchronous PageRank produces more messages than

the synchronous program and converges faster on the asyn-

chronous platforms.

TABLE I
PERFORMANCE DEMONSTRATION

Time(s) Giraph(syn) Giraph(asyn) GraphHP Grace
BM 72.32 80.20 39.10 5.21
PageRank 69.54 118.24 22.10 15.58

Demonstration Plan. The system will be demonstrated on

a personal computer. The attendees will be able to design

a wide range of graph algorithms and execute the resulting

programs on Giraph, GraphHP and Grace. They will also be

able to observe the performance comparisons of the programs

designed for synchronous platforms and the asynchronous

programs modeled after DFA-G.

V. CONCLUSION

In this demo, we propose a unified programming model,

DFA-G, for vertex-centric parallel graph processing. DFA-

G ensures that a BSP program modeled after it can run

properly on both synchronous and asynchronous platforms.

We have demonstrated how to construct a DFA-G model and

automatically transform a model into a runnable BSP program.

Our demo is currently built for the Giraph programming in-

terface but it can easily generalize to other BSP programming

interfaces.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD, 2010, pp. 135–146.

[2] C. Avery, “Giraph: Large-scale graph processing infrastructure on
hadoop,” Proceedings of the Hadoop Summit, Santa Clara, 2011.

[3] M. Han and K. Daudjee, “Giraph unchained: barrierless asynchronous
parallel execution in pregel-like graph processing systems,” Proceedings
of the VLDB Endowment, vol. 8, no. 9, pp. 950–961, 2015.

[4] G. Wang, W. Xie, A. J. Demers, and J. Gehrke, “Asynchronous large-
scale graph processing made easy,” in CIDR, 2013.

[5] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework
for distributed computation on real-world graphs,” Proceedings of the
VLDB Endowment, vol. 7, no. 14, pp. 1981–1992, 2014.

[6] Q. Chen, S. Bai, Z. Li, Z. Gou, B. Suo, and W. Pan, “GraphHP:
A hybrid platform for iterative graph processing,” Northwestern
Polytechnical University, Tech. Rep., 2014. [Online]. Available:
http://www.wowbigdata.cn/paper/GraphHP%EF%BC%9AA%20Hybrid%
20Platform%20for%20Iterative%20Graph%20Processing.pdf

[7] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous
graph processing framework for delta-based accumulative iterative com-
putation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 8, pp. 2091–2100, 2014.

[8] T. Gao, Y. Lu, and B. Zhang, “HAGP: A hub-centric asynchronous graph
processing framework for scale-free graph,” in The 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2015, pp. 789–792.

[9] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks, vol. 56, no. 18, pp. 3825–3833,
2012.

[10] S. Chung and A. Condon, “Parallel implementation of Bouvka’s mini-
mum spanning tree algorithm,” in Proceedings of IPPS, 1996, pp. 302–
308.

[11] “The DFA-G demo system, Northwestern Polytechnical University,,”
http://www.wowbigdata.cn/dfa-g/demo.html.

[12] “The University of Florida sparse matrix collection,”
http://www.cise.ufl.edu/research/sparse/matrices/.

1331

