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a b s t r a c t 

Due to richness of information on web, there is an increasing interest to search for miss- 

ing attribute values in relational data on web. Web-based relational data imputation has 

to first extract multiple candidate values from web and then rank them by their matching 

probabilities. However, effective candidate ranking remains challenging because web doc- 

uments are unstructured and popular search engines can only provide with relevant but 

not necessarily semantically matching information. 

In this paper, we propose a novel probabilistic approach for ranking the web-retrieved 

candidate values. It can integrate various influence factors, e.g. snippet rank order, occur- 

rence frequency, occurrence pattern, and keyword proximity, in a single framework by se- 

mantic reasoning. The proposed framework consists of snippet influence model and se- 

mantic matching model. The snippet influence model measures the influence of a snip- 

pet, and the semantic matching model measures the semantic similarity between a can- 

didate value in a snippet and a missing relational value in a tuple. We also present ef- 

fective probabilistic estimation solutions for both models. Finally, we empirically evaluate 

the performance of the proposed framework on real datasets. Our extensive experiments 

demonstrate that it outperforms the state-of-the-art techniques by considerable margins 

on imputation accuracy. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

A relational database is expected to present complete answers provided that a valid query is given. Unfortunately, rela-

tional data may be incomplete in practice [9] , e.g., some attribute values are missing. Therefore, there is a need for relational

data imputation, which fills in missing attribute values. Internal data imputation can be achieved by either statistical mod-

els [1,7,10–12,27] or similarity rules [28,32,35] . However, internal data imputation may fall short in the circumstance that a

missing attribute value’s reference context is unique (e.g., the author of a specific book in a book dataset without duplicate

records). Therefore, there is an increasing interest to extract the missing attribute values from external data sources, e.g.

web. 

The existing solutions for web-based relational data imputation search for a missing attribute value in the relevant snip-

pets retrieved by a search engine. Unlike relational data, web data are usually schemaless and unstructured. Optimized for
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Table 1 

Finding the publisher of “Mister Magnolia”. 

Tuple ISBN 0 0 06618790 

Title Mister Magnolia 

Author Quentin Blake 

Publication year 1981 

Publisher ? 

Target value HarperCollins Publishers 

Submitted query “0 0 06618790” “1981” “publisher”

Search engine Bing API on 2015-05-21 

# of total retrieved snippets 8 

Candidates & occurrences “HarperCollins Publishers” = 1, “Picture Lions” = 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

keyword queries, popular search engines can only provide with relevant but not necessarily semantically matching informa-

tion. As a result, it is usually infeasible to directly screen out a matching relational value in the retrieved snippets. Instead,

many relevant but non-matching values have to be extracted as candidates as well [29,31] . Therefore, web-based relational

data imputation has to depend on effective ranking to pick a matching value from a set of extracted candidate values. 

As in the web-based question answering systems [4,6] , the ranking solutions for relational data imputation [16] can be

built on the voting mechanism. In the basic form, the voting approach ranks a candidate value by its occurrence frequency

in the snippets. In the extended form, it may also consider other features, e.g. occurrence pattern, snippet rank order and

keyword proximity. It builds a ranker on each feature and computes a final score for a candidate by merging the ranking

orders. The voting approach effectively exploits the redundancy characteristic of web data: a correct value usually has a high

frequency of occurrences on web. However, in relational data imputation, the set of extracted candidates usually includes

many frequent and relevant but non-matching values. Their presence may significantly compound the difficulty of accurate

ranking. We illustrate the shortcoming of the voting approach by the example, as shown in Table 1 . Suppose that the name

of the publisher of the book titled “Mister Magnolia” is missing in a book dataset, and the keyword query is “0 0 0 6 618790

1981 publisher”, in which “0 0 0 6 618790” and “1981” are the ISBN number and publication year of the book respectively. The

returned snippets contain many occurrences of the value “Picture Lions”, which is the name of the book series , while the

matching value “HarperCollins Publishers” occurs much less frequently in these snippets. To some extent, this shortcoming

can be alleviated by incorporating other features besides occurrence frequency in the voting framework. However, as we

show in Section 5 , the effectiveness of the voting approach is still limited by disjoint feature influence estimations. 

We observe that the key challenge of effective ranking is to bridge the semantic gap between relational data and web

data. Due to relational schema, the semantics of a missing attribute value in a relational tuple is well defined. However, it

is much more challenging to reason about the semantics of a candidate value within a snippet because of the unstructured

and noisy nature of web data. On the other hand, even though every factor so far considered in the literature can influence

the matching probability of a candidate value, their disjoint influence estimations have not been systematically integrated

yet. Therefore, there is a need for a unified ranking framework that can semantically reason about matching probability. This

paper aims for such a framework. Our major contributions can be summarized as follows: 

1. First, as far as we know, we are the first to study the ranking issue of web-based relational data imputation from a

probabilistic and semantic perspective. The proposed approach seamlessly integrates various influence factors in a single

framework by semantic reasoning. The resulting framework consists of two components, snippet influence model and

semantic matching model , which measure the influence of a retrieved snippet and the matching probability of a candidate

value within a snippet respectively. 

2. Next, we present effective probabilistic estimation solutions for snippet influence model and semantic matching model . We

propose a PageRank approach for snippet influence model that can effectively incorporate snippet rank order and content

similarity in a single estimation process. Our solution for semantic matching model quantifies the matching probability

by incrementally measuring the semantic similarity between a candidate value and a missing relational value. 

3. Finally, we evaluate the performance of the proposed framework empirically on real datasets. Our extensive experiments

demonstrate that it achieves considerably higher imputation accuracy than existing techniques. 

The rest of this paper is organized as follows: Section 2 reviews related works. Section 3 sketches the web-based rela-

tional data imputation process. Section 4 describes the probabilistic ranking framework and the probabilistic solutions for

snippet influence model and semantic matching model. Section 5 empirically evaluates the performance of the proposed

framework. Finally, Section 6 concludes this paper. 

2. Related work 

The first prototype system for web-based relational data imputation using search engines was proposed in [16] . Li et al.

focused on how to formulate effective keyword queries such that the missing values can be successfully retrieved. In a

follow-up work [15] , they also investigated the effective extraction techniques that can improve the recall level while at the

same time including as few values as possible in the candidate set. In contrast, our work in this paper focused on a general
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ranking framework that can accurately estimate the matching probability of extracted candidates. Its effectiveness does not

depend on the goodness of keyword queries and candidate extraction techniques. 

The web-based question answering systems [4,6,8,13,17,25] and statement truthfulness verification on web [14] also re-

quired to rank multiple extracted candidate entities/concepts. The question answering systems first employed a set of filters

to yield reliable candidate answers and then ranked them in a voting approach by computing their scores on various fea-

tures. As in question answering, the existing ranking techniques for statement truthfulness verification are also based on

voting. We have presented and implemented a similar vote-based approach for web-based relational data imputation for

comparative empirical study in this paper. Our experiments showed that the performance of the voting-based approach can

still be limited by disjoint feature influence estimations. 

There also exist some work on object-level web search [19,20] and object set expansion [30] . Similar to document re-

trieval, object retrieval ranked objects in term of their relevance and popularity in answering user queries. The work on

set expansion instead studied how to expand an initial set of objects into a more comprehensive set. Both object-level

web search and set expansion consider including multiple candidates in the final result set. They measure ambiguous rel-

evance instead of the well-defined matching probability as required by relational data imputation. Therefore, their ranking

approaches can not be applied to the task of relational data imputation. 

From a broader perspective, semantic matching has also been studied in the contexts of ontology retrieval [2,3,26] and

image retrieval [33,34] . For instance, [3] introduced a three-stage approach to semantically retrieve the most relevant ontol-

ogy from a given repository in the circumstance that early requirements may be ambiguous, incomplete and/or inconsistent.

[34] developed a semantic preserving distance metric learning method that encoded the feature similarity and semantic

similarity in a unified feature space for image clustering task. In these works, the structures of ontology repository and

feature space are well defined. In web-based relational data imputation, the snippets retrieved by search engines are in-

stead unstructured. Our proposed framework is different from these ranking techniques in that it can effectively bridge the

semantic gap between structured relational data and unstructured web data. 

3. Background 

In this section, we first formulate the task of candidate value ranking in Section 3.1 , and then present a voting approach

in Section 3.2 . 

3.1. Task formulation 

Let R denote a relational schema, A denote an attribute in R , and T denote an instance of schema R . A tuple t in T is

incomplete iff there exists missing attribute values in t . A tuple t ’s attribute value at A is said to be missing in T if it is equal

to null . Automatic web-based relational data imputation is supposed to fill in the missing attribute values in T by retrieving

and analyzing relevant web information. Abstracted in Fig. 1 , it consists of the following three steps: 

Step 1. Query construction: construct a set of keyword queries, Q = { q 1 , q 2 , . . . , q m 

}; 

Step 2. Candidate extraction: retrieve a set of relevant web snippets by a search engine, S = { s 1 , s 2 , . . . , s n } and extract a set

of candidate values, C = { c 1 , c 2 , . . . , c l }, from the snippets in S ; 

Step 3. Candidate ranking: rank the candidate values in C by matching probability. 

Unfortunately, every step in the above procedure poses challenges. In the step of query construction, a short query may

retrieve many non-semantically-matching even irrelevant snippets. Their presence may significantly compound the difficulty 

of effective ranking. A long query may not work well either. It may retrieve only a short list of snippets, and thus decrease

the success rate of a missing value being extracted. In the step of candidate extraction, strict techniques (e.g., pattern-

based [22–24] ) decrease the probability that a missing value be successfully extracted. In comparison, loose techniques (e.g.,

Name-Entity-Recognizer-based (NER-based) [18] ) usually retrieve more false positive candidate values. 

In this paper, we focus on the final step, candidate ranking. Note that whichever techniques used for query construction

and candidate extraction, multiple candidate values have to be extracted and considered for matching. Therefore, effective

candidate ranking is crucial to the accuracy of relational data imputation. It has been pointed out [16] that the techniques of

using multiple queries and loose (rather than pattern-based) extraction approaches are effective in increasing the recall level

of candidate extraction. Since these techniques usually generate more candidate values, they make the accuracy of relational

data imputation even more dependent upon effective ranking. 

For ease of presentation, we summarize the used notations in Table 2 . We formulate the task of candidate value ranking

as follows: 

Definition 1 (Target attribute value) . Given an instance T of a relational schema R , suppose that a tuple t ∈ T has a missing

value at the attribute A . A target attribute value is the true attribute value at A of the tuple t , denoted by t [ A ]. 

Definition 2 (Task of candidate value ranking) . Given a set of candidate values extracted from web, C = { c 1 , c 2 , . . . , c l }, con-

sidered for a missing attribute value t [ A ], the task of candidate value ranking is to order the values in C by their probabilities

of matching t [ A ]. Ideally, the target value t [ A ] should be included in the set C and ranked first with the highest matching
probability. 
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Fig. 1. Relational data imputation based on web (The surrounding dashed boxes are instances of the procedure.). 

Table 2 

Symbols and descriptions. 

Symbol Description 

R Relational schema 

T An instance of relational schema R 

t A tuple of T , where t ∈ T 
A An attribute in R 

t [ A ] The true value of attribute A (w.r.t. t ) 

S A set of snippets (w.r.t. t and A ) 

s m An element of S , where s m ∈ S 
C A set of candidate attribute values 

c i An element of C , where c i ∈ C 
| D | The cardinality of set D (i.e., number of elements of D ) 

K The number of non-null attribute values of t 

K s m The number of non-null attribute values of t occurring in s m 
N The total number of returned snippets in S 

N c i The number of snippets containing a candidate value c i 
S c i The set of snippets containing c i 
ι The average length of each snippet 

ν The number of candidate attribute values 

 

 

 

 

 

 

 

3.2. A voting approach 

Similar to web-based relational data imputation, the systems for web-based question answering and statement truth-

fulness verification [8,13,14,25] also require ranking components. They usually score candidate answers based on certain

features and then compute a final rank order by merging the scores. Due to comprehensiveness of the features consid-

ered by the ranking technique proposed in [14] for statement truthfulness verification, we construct a voting-based ranking

method based on these features. 

Suppose that the tuple t with a missing attribute value at A has totally K non-null attribute values. Let N denote the total

number of returned snippets in S and N c i denote the number of snippets containing a candidate value c i . Given a snippet s m
containing c i , let K s m denote the number of non-null attribute values of t occurring in s m 

. The considered features include: 

• Entity type. This feature considers whether the entity type of a candidate value matches the type of a missing target

value. 
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• Snippet coverage. This feature measures the percentage of returned snippets that contain a candidate value. The snippet

coverage of a candidate c i is computed by: 

SC(c i ) = 

N c i 

N 

. (1) 

• Context relevance. This feature measures the relevance of a snippet to the relational context of a missing attribute value.

The context relevance of a snippet s m 

is estimated by CR ( s m 

) = 

K s m 
K . The context relevance of a candidate c i is measured

by: 

C R (c i ) = 

∑ 

m 

C R (s m 

) 

N c i 

= 

∑ 

m 

K s m 

K · N c i 

, (2) 

in which s m 

denotes a snippet containing c i . 

• Snippet rank. Snippet rank can also influence a candidate value’s matching probability. The snippet rank of c i is computed

by aggregating the ranks of the snippets containing it: 

SR (c i ) = 

∑ 

m 

(1 − pos (s m 

) /N ) ∑ 

1 ≤n ≤N ( 1 − n/N) 
, (3) 

in which pos ( s m 

) denotes the position of s m 

in the rank list of returned snippets. 

• Term distance. This feature measures the compactness of context term occurrences in a snippet. A snippet, where context

terms occur closer to each other, is supposed to contain the target attribute value with a higher probability. Considering

the smallest window of consecutive words that contains context terms in a snippet, we measure the feature of term

distance by : 

T D (c i ) = 

∑ 

m 

((1 − | L m | 
| s m | ) ·

K s m 
K 

) 

N c i 

, (4) 

in which L m 

denotes the smallest term window in s m 

. In Eq. (4) , we consider the length of the smallest term window

as well as the number of context terms covered in a snippet. For term distance measurement, a snippet containing

fewer context terms would automatically benefit from a smaller window size. We therefore penalize it by computing the

portion of context terms it covers. 

• Pattern matching. This feature measures the influence of occurrence pattern on a candidate’s matching probability. A

candidate, whose occurrence patterns in the snippets match the frequent occurrence patterns of similar values at the

same attribute in T , is supposed to have a high probability of being the target value. Suppose that the top-k frequent

occurrence patterns of the attribute values at A are { p 1 , . . . , p k } and each pattern p j has an assigned weight of w j . The

feature influence of pattern matching is measured by: 

P M(c i ) = 

∑ 

j (w j · M j ) ∑ 

j w j 

, (5) 

in which M j denotes whether there exists an occurrence of c i in returned snippets that matches a top-k pattern, M j = 1

if c i matches the pattern p j and M j = 0 otherwise. 

Summarizing the features described above, the voting approach computes the ranking score of a candidate c i using the

following formula: 

Score (c i ) = w 1 · SC(c i ) + w 2 · CR (c i ) + w 3 · SR (c i ) + w 4 · T D (c i ) + w 5 · P M(c i ) , (6)

in which w i (i = 1, . . . , 5) denote the feature weights. In practice, feature weight assignment is usually optimized by training. 

4. Probabilistic ranking framework 

Given an incomplete tuple t with a missing value at the attribute A and a candidate value c i , we denote the probability

of c i being the missing attribute value by P ( c i | t ). Since candidate values can only be extracted from snippets, P ( c i | t ) can be

computed by applying the law of total probability as follows: 

P (c i | t) = 

| S| ∑ 

m =1 

P (c i , s m 

| t) . (7) 
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Then, applying the Bayesian rule on the probability P ( c i , s m 

| t ), we have 

P (c i | t) = 

| S| ∑ 

m =1 

P (c i , s m 

) · P (t| c i , s m 

) 

P (t) 

= 

| S| ∑ 

m =1 

P (s m 

) · P (c i | s m 

) · P (t| c i , s m 

) 

P (t) 
, 

(8)

in which P ( s m 

) denotes the retrieval probability of the snippet s m 

, P ( c i | s m 

) denotes the probability of s m 

containing c i , and

P ( t | c i , s m 

) denotes the probability of the semantic context of the candidate c i in s m 

matching that of the missing attribute

value in t . Obviously, P (c i | s m 

) = 1 if the snippet s m 

contains c i , and otherwise P (c i | s m 

) = 0 . Let S c i denote the set of snippets

containing c i . We have 

P (c i | t) = 

| S c i | ∑ 

m =1 

P (s m 

) · P (t| c i , s m 

) 

P (t) 
. (9)

Note that the ranking framework only needs to measure the relative order of P ( c i | t ). We also observe that given a tuple

t , the denominator of Eq. (9) , P ( t ), is a constant value. Therefore, the candidate values can be ranked by 

P r (c i | t) = 

| S c i | ∑ 

m =1 

P (s m 

) ︸ ︷︷ ︸ 
snippet in f luence model 

· P (t| c i , s m 

) ︸ ︷︷ ︸ 
semant ic mat ching model 

. (10)

In Eq. (10) , the priori retrieval probability, P ( s m 

), characterizes a snippet’s influence on estimating a candidate value’s

matching probability. We quantify its estimation by snippet influence model . P ( t | c i , s m 

) represents the probability that given a

snippet s m 

and a candidate value occurring in s m 

, the semantic context of c i in s m 

matches that of the target attribute value

in t . We quantify its estimation by semantic matching model . 

4.1. Snippet influence model 

A snippet’s position in the rank list indicates its relevance to a keyword query, thus to the semantic context of the incom-

plete tuple t . A snippet ranked higher by a search engine should be considered to have higher influence. We also observe

that the snippets retrieved by a keyword query usually have similar contents. Due to the redundancy characteristic of web

data, the information in a snippet can be supposed to be more reliable if it is supported by more sources. Correspondingly,

a snippet with a higher degree of content similarity with regard to other snippets should be considered to have higher

influence. In this subsection, we propose a PageRank [21] approach for measuring snippet influence that can integrate these

two factors in a single model. 

PageRank is a recursive graph-based random walk procedure. Imagine that an alien lives in a graph and he can reach

any vertex along edges or by directly landing at it in a random manner. The PageRank procedure computes the probability

that every vertex is reached by the alien. We construct a snippet graph G , whose vertices V and edges E represent the

snippets and their content similarity respectively. The graph is undirected and complete since there exists an edge between

every pair of snippets. The common solutions to measure content similarity between snippets are based on Jaccard index ,

a.k.a. Jaccard similarity coefficient , or Cosine similarity . We have evaluated both solutions and found that they achieved similar

performance. Since Jaccard index is easier to compute, we use it to measure content similarity between snippets. Let TS ( s m 

)

represent the token set of the snippet s m 

. Given two snippets s m 

and s n , their content similarity is measured by 

CS(s m 

, s n ) = 

| T S(s m 

) ∩ T S(s n ) | 
| T S (s m 

) ∪ T S(s n ) | . (11)

Correspondingly, the edge weight between s m 

and s n , W ( s m 

, s n ), is set to be CS ( s m 

, s n ). 

In the PageRank model, a snippet’s retrieval probability corresponds to its probability of being reached by an alien ran-

domly walking on the snippet graph G . We denote the proposed computational algorithm by SSRank, which stands for

Similarity-based Snippet Re-rank method. The recursive computation of retrieval probability on G is specified by 

SSRank k +1 (s m 

) = λ · J s m + (1 − λ) ·
∑ 

s n ∈ V & s n � = s m 

SSRank k (s n ) · W (s m 

, s n ) ∑ 

s j ∈ V & s j � = s n W (s n , s j ) 
, (12)

in which λ represents the dampening factor, the first part ( λ · J s m ) represents the probability of directly landing at s m 

by

random selection, and the second part represents the probability of indirectly reaching s m 

from other vertices along the

edges. 

In Eq. (12) , the probability of an alien located at s n walking along the edge to s m 

is set to be proportional to the weight

of the edge, W ( s m 

, s n ), or the content similarity between s m 

and s n . The probability of random jump to a snippet, J s m ,
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depends on its ranking position in the retrieved snippet list. The higher rank order a snippet s m 

has, the higher value its

corresponding J s m has. We set the value of J s m by 

J s m = 

P osW eight(s m 

) 
∑ | S| 

n =1 
P osW eight(s n ) 

, (13) 

where PosWeight ( s n ) denotes the position weight of the snippet s n in the retrieved list. The value of PosWeight ( s n ) is specified

by 

P osW eight(s n ) = 

1 

log 2 (1 + P os (s n ) ) 
, (14) 

in which Pos ( s n ) represents the rank order of s n in the retrieved list. It can be observed that the value of PosWeight ( s n )

decreases with the rank order. For instance, if s n is ranked first by a search engine, it has the highest rank order of 1. With

Pos (s n ) = 1 , we have PosW eight(s n ) = 

1 
log 2 (1+1) 

= 1 . 

In Eq. (12) , we set the value of λ to 0.15 and the initial values of SSRank 0 ( s m 

) to 1 
| V | . The values of SSRank k +1 (s m 

) are

recursively computed until they converge. The complete procedure of Snippet Influence Model is sketched in Procedure 1 . 

Procedure 1 Similarity-based Snippet Re-rank method(SSRank). 

Input: G is the snippet graph; 

Output: A vector SSRank k +1 stores each snippet’s score (i.e. P (s m 

) ); 

1: procedure SSRank (G) 

2: (V, E) ← G � Split graph G into snippets and links. 

3: SSRank k ← a vector of length | V | � The current SSRank estimate.

4: SSRank k +1 ← a vector of length | V | � The resulting better SSRank estimate.

5: J ← a vector of length | V | 
6: for all s m 

∈ V do 

7: SSRank k (s m 

) ← 

1 

| V | � Initially, each snippet is equally likely to be a start point.

8: end for 

9: for all s m 

∈ V do 

10: J s m ← The probability of random jump to a snippet. � Eqs. (13) and (14)

11: end for 

12: while SSRank k +1 has not converged do 

13: for all s m 

∈ V do 

14: SSRank k +1 (s m 

) ← λ · J s m 
15: end for 

16: for all snippet s n ∈ V do 

17: AS ← the set of snippets such that s m 

∈ V and (s m 

, s n ) ∈ E and W (s m 

, s n ) � = 0 

18: W S ← 

∑ 

W (s m 

, s n ) , where s m 

∈ V and (s m 

, s n ) ∈ E and W (s m 

, s n ) � = 0 

19: if W S > 0 then 

20: for all snippet s m 

∈ AS do 

21: SSRank k +1 (s m 

) ← SSRank k +1 (s m 

) + 

(1 − λ) · SSRank k (s n ) · W (s m 

, s n ) 

W S 
22: end for 

23: else 

24: for all snippet s m 

∈ V do 

25: SSRank k +1 (s m 

) ← SSRank k +1 (s m 

) + 

(1 − λ) · SSRank k (s n ) 

| V | 
26: end for 

27: end if 

28: SSRank k ← SSRank k +1 

29: end for 

30: end while 

31: return SSRank k +1 

32: end procedure 
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Fig. 2. Context matching. 

Fig. 3. Value matching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Semantic matching model 

The semantic matching model quantifies P ( t | c i , s m 

), the probability that the semantic context of a candidate value c i in a

snippet s m 

matches that of the target attribute value missing in the tuple t . We represent the estimation of P ( t | c i , s m 

) by 

P (t| c i , s m 

) = 

P (t, c i , s m 

) 

P (s m 

) · P (c i | s m 

) 
= 

P (t, s m 

) 

P (s m 

) 
· P (t, c i , s m 

) 

P (t, s m 

) 

= P (t| s m 

) ︸ ︷︷ ︸ 
context matching probability 

· P (c i | t, s m 

) ︸ ︷︷ ︸ 
v alue matching probability 

, 
(15)

where P (c i | s m 

) = 1 since the snippet s m 

contains the candidate value c i . In Eq. (15) , P ( t | s m 

) represents the probability that

the semantic context of s m 

matches that of t without regard to the missing attribute value in t . P ( c i | t , s m 

) represents the

probability that c i is the missing attribute value, provided that the semantic context of s m 

matches that of t . By Eq. (15) ,

P ( t | c i , s m 

) can be incrementally estimated by measuring two semantic components, P ( t | s m 

) and P ( c i | t , s m 

). 

We illustrate the semantics of context matching probability and value matching probability by the example of a book

dataset. Suppose that t specifies a book, its author is the missing target attribute value, and its other non-null attribute

values serve as context keywords. The semantic context of t , as shown in Fig. 2 , defines the identity of the book, and the

semantic pattern of the missing value, as shown in Fig. 3 , specifies that it is the value at the attribute author of the book.

Then, the context matching probability, P ( t | s m 

), corresponds to the probability that the information in s m 

is about the book

as specified by t . The value matching probability, P ( c i | t , s m 

), corresponds to the probability that the candidate value c i in s m
is the author of the book, under the assumption that s m 

is indeed about the book. 

4.2.1. Estimation of P ( t | s m 

) 

The probability of P ( t | s m 

) quantifies the context similarity between the snippet s m 

and the tuple t . We consider its two

orthogonal influence factors, term coverage and term compactness . We estimate P ( t | s m 

) by 

P (t| s m 

) = f cov e (s m 

) · f comp (s m 

) , (16)

in which f cov e (s m 

) and f comp ( s m 

) denote the factors of term coverage and term compactness respectively. Term coverage

measures the percentage of the non-null attribute values of t occurring in s m 

. More context terms a snippet contains, more
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Context terms (K = 3) : k1 k2 k3

sm : w1w2 w3 k1w4w5w6 k2w7w8 k3w9 k1 w10 w11

Shortest text segment: L2

|L1|=8

|L2|=6

|sm|=15

sm

Fig. 4. A toy example of calculating term compactness. w i represents a word in the text of snippet s m . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

probably its semantic context matches that of the tuple t . Term compactness measures the occurrence distance between

context terms. More closer they occur in a snippet, more probably the snippet’s context matches that of t . 

� Term coverage 

As shown in Eq. (2) in Section 3 , term coverage can be simply measured by 

f cov e (s m 

) = 

K s m 

K 

, (17) 

where K denotes the total number of non-null attribute values of t and K s m denotes the number of non-null attribute values

of t occurring in s m 

. 

Eq. (17) assumes that different attribute values are equally important in determining the semantic context of s m 

. In

practice, however, it is more likely that their importance are unequal. For instance, consider a tuple in a book dataset that

contains the ISBN, title, author and publisher attribute values. It can be observed that a book’s ISBN number and title are

usually distinct, while its author and publisher values may be shared by many books. Therefore, the ISBN and title attribute

values are more effective than the author and publisher values in determining the book identity. By weighting different

attribute values, we can measure term coverage of s m 

by an improved metric as follows: 

f ′ cov e (s m 

) = 

∑ 

A ∈ A s m At t rW eight (A ) 
∑ 

A ∈ A At t rW eight (A ) 
, (18) 

where A represents the set of attributes whose values are non-null in t , A s m represents the set of attributes whose values

occur in s m 

and AttrWeight ( A ) denotes the importance weight of the attribute A . We measure the importance weight of an

attribute, A , by its distinctness in the tuples as follows: 

At t rW eight (A ) = 

|{ t [ A ] | t ∈ T }| 
| T | , (19) 

where the denominator (| T |) represents the total number of tuples in T , and the numerator denotes the number of different

values of the attribute A occurring in T . If A is a primary key of a table, its importance weight would be maximal with the

value of 1. 

� Term compactness 

We consider the smallest window of consecutive words in s m 

that contains all the context terms occurring in s m 

. Note

that each term has to occur only once in the specified text segment. By the smallest window , we mean that the text segment

has the minimal number of words. Intuitively, a shorter text segment implies that the context terms of t occur closer to

each other. Correspondingly, s m 

’s semantic context matches that of t with a higher probability. 

With the help of an exponential function e x and a damping factor μ where 0 < μ ≤ 1, we measure term compactness

by 

f comp (s m 

) = e 
μ·(− | L m | 

K s m ·| s m | ) , (20) 

where | L m 

| denotes the length of the shortest text segment L m 

and K s m denotes the number of context terms occurring

in s m 

. In Eq. (20) , | L m | 
K s m 

measures the average compactness of terms in s m 

. Normalized by the length of a snippet, | s m 

|, the

average compactness captures the relative proximity between context terms in a snippet. A toy example of calculating term

compactness has been shown in Fig. 4 . 

4.2.2. Estimation of P ( c i | t , s m 

) 

P ( c i | t , s m 

) quantifies the probability that a candidate value c i in s m 

is the missing attribute value in t , provided that the

semantic context of s m 

matches that of t . We consider two orthogonal factors that influence the probability of P ( c i | t , s m 

),

Value Distance and Pattern Matching . Value distance measures a candidate value’s proximity to the context terms of t . Pattern

matching instead measures the probability from the perspective of occurrence pattern. We estimate P ( c i | t , s m 

) by 

P (c i | t, s m 

) = f d (s m 

, c i ) · f p (s m 

, c i ) , (21)
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where the functions f d and f p denote the influence factors of value distance and pattern matching respectively. 

� Value distance 

Consider the smallest window of consecutive words in the snippet s m 

, which contains all the context terms occurring in

s m 

and the candidate value c i . We denote it by Win ( c i , t ). 

As in the measurement of term compactness, the smallest window means that the corresponding text segment has the

minimal number of words and each context term has to occur only once in the window. Within Win ( c i , t ), we denote the

term window beginning with the first occurrence of a context term and ending at the last occurrence of a context term by

Win ( t ). We measure the value distance of c i by 

f d (s m 

, c i ) = μ + (1 − μ) · | W in (t) | 
| W in (c i , t) | , (22)

in which μ is a dampening factor and 0 < μ < 1. According to Eq. (22) , in the case that the candidate value c i occurs

between two context terms in Win ( c i , t ), the two windows, Win ( c i , t ) and Win ( t ), are equal. As a result, f d ( s m 

, c i ) achieves

the maximal value of 1. In the case that Win ( c i , t ) and Win ( t ) are not equal, the value of f d ( s m 

, c i ) depends on the proximity

of c i to Win ( t ). 

� Pattern matching 

In the voting approach presented in Section 3 , the factor of pattern matching is evaluated in a batch mode by considering

all the snippets containing a candidate value. Our framework instead uses it to reason about the matching probability of a

candidate value within a single snippet. With the knowledge of the top-k occurrence patterns, we measure the influence of

pattern matching by 

f p (s m 

, c i ) = 

∑ 

j (w j · M j ) + w 0 ∑ 

j w j + w 0 

, (23)

where M j = 1 if c i has a top-k occurrence pattern of p j in s m 

, otherwise M j = 0 ; w j denotes the weight of the occurrence

pattern p j . 

Note that the metric presented in Eq. (23) has a smooth factor of w 0 . Based on the Open-World Assumption , the learned

top-k patterns are only part of all possible occurrence patterns of the target attribute value. Without the smooth factor, the

value of f p ( s m 

, c i ) would be estimated to 0 if c i has no top-k occurrence pattern in s m 

. In practice, we set the value of w 0 to

0.1. 

4.2.3. Put all together 

The complete estimation procedure of Semantic Matching Model is sketched in Procedure 2 . 

Procedure 2 Semantic match. 

Input: a tuple t , a snippet s m 

, a candidate value c i that appear in s m 

. 

Output: an estimated value of P (t| c i , s m 

) . 

1: procedure SemanticMatch ( t , s m 

, c i ) 

2: f cov e ← calculate Term Coverage (Eq. (18)) 

3: f comp ← calculate Term Compactness (Eq. (20)) 

4: P (t| s m 

) ← f cov e · f comp � context matching probability

5: f d ← calculate Value Distance (Eq. (22)) 

6: f p ← calculate Pattern Matching (Eq. (23)) 

7: P (c i | t, s m 

) ← f d · f p � value matching probability

8: P (t| c i , s m 

) ← P (t| s m 

) · P (c i | t, s m 

) 

9: return P (t| c i , s m 

) 

10: end procedure 

4.3. Ranking procedure and complexity analysis 

The whole ranking procedure has been sketched in Procedure 3 . Let N denote the number of snippets and ι denote the

average length of each snippet. For the “SSRank” procedure, the first step constructs a complete graph. It involves calculating

content similarity between every pair of snippets. Its time complexity is O( ι · N 

2 ). Assume that the random walk procedure

needs τ iterations to converge. The time complexity of random walk can be represented by O( τ · N 

2 ). Without loss of

generality, the time complexity of the “SSRank” procedure can be represented by O( (ι + τ ) · N 

2 ). 

For the “SemanticMatch” procedure, suppose that there are ρ types of frequent patterns. We also assume that the oc-

currence frequencies of context terms and candidate values in each snippet is small, thus treated as a constant in time

complexity analysis. Given a candidate, detecting a frequent pattern in a snippet requires to scan the snippet content once.

Calculating term coverage, term compactness and value distance also requires to scan the snippets. Without loss of general-

ity, the time complexity of the “SemanticMatch” procedure can be represented by O( ρ · ι). 
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Procedure 3 A probabilistic ranking method. 

Input: a tuple t , a set of snippets S, a set of candidate values C 

Output: an ordered list of C 

1: procedure Ranking ( t , S, C) 

2: RankList ← a list of length | C| � Each element in RankList is a < Key, V alue > pair, whose Key represents a candidate 

and V alue represents the candidate’s score that is initialized to 0. 

3: G ← S � Construct a graph according to a snippet set’s information. 

4: SSRank k +1 ← SSRank ( G ) � Snippet Influence. Details of SSRank(G) refer to Procedure 1 in Subsection 4.1 . 

5: for all snippet s m 

∈ S do 

6: P 1 ← SSRank k +1 (s m 

) 

7: for all candidate c i ∈ C s m do � C s m represents a set of candidates that appear in s m 

, C s m ⊆ C 

8: P 2 ← SemanticMatch ( t , s m 

, c i ) � Semantic Matching. Details of SemanticMatch( t, s m 

, c i ) refer to Procedure 2 in 

Subsection 4.2 . 

9: RankList(c i ) .V alue ← RankList(c i ) .V alue + P 1 · P 2 
10: end for 

11: end for 

12: sort the RankList in descending order by RankList. v alue . 

13: C ← RankList.Key 

14: return C 

15: end procedure 

Table 3 

Samples of BX dataset. 

ISBN Title Author Publication year Publisher 

� � � � �

0 0 01010565 Mog’s Christmas Judith Kerr 1992 Collins 

0 0 01047213 The Fighting Man Gerald Seymour 1993 HarperCollins 

0 0 02243016 Desperadoes Joseph O’Connor 1994 Flamingo 

� � � � �

 

 

 

 

 

 

 

 

 

 

 

Therefore, we have the following theorem: 

Theorem 1. Assume that the occurrence frequencies of context terms and candidate values in the retrieved snippets are small,

thus treated as a constant in time complexity analysis. The time complexity of the whole ranking procedure is O( (ι + τ ) · N 

2 + ρ ·
ι · ν · N), in which ν represents the number of extracted candidate values. 

5. Experimental evaluation 

This section empirically evaluates the performance of the proposed ranking framework by comparative study. It is or-

ganized as follows: Section 5.1 presents two real test datasets. Section 5.2 presents the experimental setup, the alternative

ranking approaches and evaluation metrics. Section 5.3 presents the comparative experimental results. Section 5.4 evaluates

how the performance of different ranking approaches vary with the numbers of analyzed snippets. Section 5.5 evaluates

how their performance vary provided with different query patterns. Finally, Section 5.6 evaluates how their performance

vary with a stricter candidate extraction technique. 

5.1. Datasets 

The two test relational datasets are: 

• Book-Crossing [36] (BX). This dataset was collected by Cai-Nicolas Ziegler in a 4-week crawl (August / September 2004)

from the Book-Crossing community with kind permission from Ron Hornbaker, Chief Technology Officer of Humankind

Systems. It contains 278,858 users (anonymous but with demographic information) providing 1,149,780 ratings (explicit 

/ implicit) about 271,379 books 1 . A sample of the BX dataset is presented in Table 3 . 

• World Information (world). The world database, provided by Statistics Finland 

2 , is pre-installed in MySQL (Version 5.5).

Our experiments use the country table that stores information about countries of the world. The table contains 239

countries and has 15 attributes, e.g. country name , continent , region , capital and surface area . A sample of the country

dataset is also presented in Table 4 . 
1 http://www2.informatik.uni-freiburg.de/ ∼cziegler/BX/ 
2 http://www.stat.fi/worldinfigures 

http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www.stat.fi/worldinfigures
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Table 4 

Samples of world dataset. 

Code Name Continent Region SurfaceArea IndepYear Population ��� Capital 

� � � � � � � ��� �

AGO Angola Africa Central Africa 124670 0.0 0 1975 128780 0 0 ��� Luanda 

AIA Anguilla North America Caribbean 96.00 Null 80 0 0 ��� The Valley 

ALB Albania Europe Southern Europe 28748.00 1912 3401200 ��� Tirana 

� � � � � � � ��� �

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Experimental setup 

We compare the proposed probabilistic ranking framework, denoted by Prob , with four other ranking methods, which

include: 

• Frequency-based Ranking method (abbr. Freq). The work on web-based question answering [8,29] pointed out that a

right answer usually has high occurrence frequency in a redundant large corpus. This observation is also largely true in

the application of web-based relational data imputation. Therefore, we use the simple frequency-based ranking method

as the baseline. 

• Confidence-based Ranking method (abbr. Conf). Proposed in [15] , it ranks a candidate by considering three parameters,

document confidence, candidate frequency and the distance between candidate and context terms. Specifically, it mea-

sures the matching probability of a candidate βc by a heuristic formula: 

P (βc | α) = 

∑ 

d∈ Docs c on f (d) · s (βc , d) ∑ 

d∈ Docs c on f ( d) 
, (24)

where conf ( d ) is the confidence of document d , and s ( βc , d ) is the local score of βc in d . s ( βc , d ) is estimated by: 

s (βc , d) = w · f req (βc , d) 

N 

+ (1 − w ) ·
∑ 

1 ≤i ≤ f req 

| d| − dist i (βc , α) 

f req (βc , d) · | d| , (25)

where | d | is the length of document d , freq is the frequency of βc in d , dist i is the distance between the i th mention of

βc and the query entity α in d , N is a normalization factor and w is a scaling factor. 

• Vote-based Ranking method (abbr. Vote). We have also implemented a voting approach for web-based relational data

imputation as presented in Section 3 for comparative purpose. It was structured like the ranking framework originally

proposed for web-based statement truthfulness verification [14] . 

• Context-aware Entity Ranking method (abbr. CER). Proposed in [5] , it first constructs an entity graph based on the rela-

tionship between extracted entities and then ranks the candidate entities through random walk in the graph. The CER

approach aims to take advantage of the relationship between web entities (as represented by graph model) to enable

effective ranking. 

The imputation accuracy of the ranking methods are compared on two metrics, # Top-k and MRR : 

• # Top-k. It measures the number of missing attribute values that are ranked in the top-k positions in the ordered

list. The metric of top-1 is the most important indicator of ranking accuracy because relational data imputation usually

requires a single value for a missing one. In our experiments, we use the metrics of top-1 and top-3. 

• MRR. Standing for Mean Reciprocal Rank , it is computed by 

MRR = 

1 

N 

∑ 

t 

1 

rank t[ A ] 

, (26)

where N is the number of test tuples with missing attribute values and rank t [ A ] represents the position of a target at-

tribute value in the candidate ranking list. Complementary to the metric of Top-k, the metric of MRR measures the

overall ranking accuracy by considering both the top-ranked target values and those not ranked in the top positions. 

In our experiments, we use Bing Search API 3 , provided by Microsoft, to retrieve relevant documents from web. The per-

formance of various ranking approaches are evaluated using both the loose and strict candidate extraction techniques. The

loose technique uses Name Entity Recognizer [18] to extract candidate attribute values from unstructured text. We used

the value extracting module of an open source Question&Answering system named Ephyra 4 . It integrates a series of Nat-

ural Language Processing technologies, which include (Conditional Random Field) CRF-NER 

5 from Stanford, openNLP 6 from
3 https://datamarket.azure.com/dataset/bing/search 
4 http://www.ephyra.info 
5 http://nlp.stanford.edu/software/CRF-NER.shtml 
6 http://opennlp.apache.org 

https://datamarket.azure.com/dataset/bing/search
http://www.ephyra.info
http://nlp.stanford.edu/software/CRF-NER.shtml
http://opennlp.apache.org
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Table 5 

The patterns of submitted queries of two datasets. 

Datasets Attributes Query pattern 

BX ISBN t[Title] + t[Publication Year] + “ISBN”

Title t[ISBN] 

Author t[Title] 

Publication year t[ISBN] 

Publisher t[ISBN] + t[Publication Year] + “publisher”

world Continent t[Name] + “continent”

Region t[Name] + “region”

SurfaceArea t[Name] + “surface area square km”

IndepYear t[Name] + “independence”

Capital t[Name] + “capital”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apache, WordNet 7 from Princeton and Snowball 8 . In the strict case, we filter the candidates extracted by NER by the learned 

occurrence patterns. To be included in the candidate set, a value should have at least a referred occurrence pattern in the

retrieved snippets. 

5.3. A comparative study 

In the BX dataset, our experiments impute the attribute values at author , title , isbn , publication year and publisher . In the

world dataset, our experiments impute the attribute values at region , surface area , continent , capital and independent year . The

number of missing values at each attribute and its corresponding keyword query pattern have been presented in Table 5 .

For the world dataset, the average number of returned snippets per keyword query is 282, while the number is only 61 for

the BX dataset. We, therefore, set the number of analyzed snippets to 300. Our experiments show that setting it to be more

than 300 does not result in improved imputation recall and accuracy. 

The detailed evaluation results on the BX dataset are presented in Table 6 . The values at the top-k columns of the table

represent the percentage of target attribute values ranked in the top-k positions. It can be observed that Prob achieves the

overall best ranking accuracy among the tested methods. The Freq method may not perform well in the circumstance that

there exist some highly frequent non-matching values in the candidate set. In the example shown in the introduction, Freq

fails to rank the matching value “HarperCollins Publisher” before another candidate “Picture Lions”. By considering other

relevant features besides occurrence frequency, Vote achieves an overall better accuracy than Freq . However, it remains very

challenging to optimally assign the influence weights of different features. In Vote , with the learned weight assignment, a

candidate’s score on some feature may dominate its scores on other features. Ranking biased towards this feature may result

in poor accuracy. Again, in the example shown in the introduction, the candidate “Picture Lions” has a very high occurrence

frequency in returned snippets. Its final score in Vote is dominated by its score on occurrence frequency. As a result, it is

still ranked before the matching value “HarperCollins Publisher”, which has a low frequency, even though its scores on other

features are low. 

It can be observed that Prob consistently outperforms Conf on ranking accuracy. Even though the Conf approach inte-

grates the local score of a candidate within a snippet and confidence measurement of the snippet in a single model, our

experiments show that its performance is still limited by linear combination of frequency and distance in the computa-

tion of local score. It is also worthy to point out that Prob achieves an overall better performance than CER , even though

CER performs better on the Title attribute. The performance advantage of Prob over Conf and CER clearly demonstrates the

effectiveness of semantic reasoning. 

The detailed evaluation results on the world dataset are presented in Table 7 . Similar to what are observed on the BX

dataset, Prob achieves the overall best ranking accuracy among all the tested approaches. In the case of surface area , the can-

didates should be of the number type. Besides the area number, other trivial numbers, e.g. 1, 2 and 2015, may be extracted

as candidates as well. Since these numbers usually have high occurrence frequency in retrieved snippets, Freq performs very

poorly in ranking the candidates for surface area . 

5.4. Varying the number of analyzed snippets 

We track the performance of different ranking approaches as the upper-bound number of analyzed snippets increases

from 1 to 300. The detailed evaluation results on the author and title attributes of BX and the region and surface area of world

are presented in Fig. 5 . In the figure, the X-axis values represent the number of snippets and the Y-axis values represent the

percentage of top ranked target values. As expected, the imputation success rate initially increases dramatically and then
7 http://wordnet.princeton.edu 
8 http://snowball.tartarus.org 

http://wordnet.princeton.edu
http://snowball.tartarus.org
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Table 6 

Ranking results of BX dataset (Maximum # of Snippets = 300). 

Loose extraction (e.g. type-based) Strict extraction (e.g. pattern-based) 

# Testing tuples Ranking method # Recall Top1 Top3 MRR # Recall Top1 Top3 MRR 

Overview 996 Vote 884 0.6912 0.9038 0.8030 704 0.8466 0 .9872 0.9131 

Conf 0.7036 0.8993 0.8097 0.8594 0 .9844 0.9220 

CER 0.7432 0.9344 0.8403 0.8622 0 .9858 0.9231 

Freq 0.6674 0.8676 0.7785 0.8267 0 .9801 0.9025 

Prob 0.7862 0.9434 0.8688 0.8778 0 .9915 0.9326 

ISBN 197 Vote 171 0.8538 0.9649 0.9102 169 0.8639 0 .9704 0.9175 

Conf 0.8889 0.9766 0.9354 0.8935 0 .9822 0.9400 

CER 0.8480 0.9649 0.9112 0.8580 0 .9763 0.9202 

Freq 0.8304 0.9591 0.9011 0.8402 0 .9763 0.9108 

Prob 0.8947 0.9883 0.9409 0.9053 0 .9941 0.9482 

Title 200 Vote 197 0.5838 0.8274 0.7194 171 0.8070 1 0.8938 

Conf 0.6294 0.8782 0.7614 0.8304 0 .9942 0.9089 

CER 0.8325 0.9695 0.8982 0.8947 1 0.9464 

Freq 0.6193 0.9036 0.7635 0.8070 0 .9942 0.8991 

Prob 0.7716 0.9239 0.8571 0.9123 1 0.9542 

Author 200 Vote 186 0.7043 0.8763 0.8001 171 0.9123 0 .9942 0.9466 

Conf 0.6613 0.8548 0.7683 0.8830 0 .9883 0.9332 

CER 0.6882 0.8660 0.7860 0.8655 0 .9766 0.9172 

Freq 0.6882 0.8387 0.7703 0.8830 0 .9766 0.9301 

Prob 0.8280 0.9032 0.8758 0.9181 0 .9942 0.9515 

Publisher year 200 Vote 181 0.7348 0.9558 0.8461 64 0.8906 1 0.9427 

Conf 0.7901 0.9669 0.8789 0.9531 1 0.9766 

CER 0.7403 0.9724 0.8520 0.9531 1 0.9766 

Freq 0.7238 0.8950 0.8226 0.9219 1 0.9584 

Prob 0.7956 0.9779 0.8860 0.9531 1 0.974 

Publisher 199 Vote 149 0.5772 0.9060 0.7418 129 0.7674 0 .9767 0.8740 

Conf 0.5369 0.8121 0.6969 0.7752 0 .9612 0.8740 

CER 0.5772 0.8926 0.7358 0.7752 0 .9845 0.8773 

Freq 0.4497 0.7181 0.6143 0.7132 0 .9612 0.8319 

Prob 0.6174 0.9262 0.7717 0.7054 0 .9690 0.8379 

Table 7 

Ranking results of world dataset (Maximum # of Snippets = 300). 

Loose extraction (e.g. type-based) Strict extraction (e.g. pattern-based) 

# Testing tuples Ranking method # Recall Top1 Top3 MRR # Recall Top1 Top3 MRR 

Overview 754 Vote 732 0.7609 0.9290 0.8482 686 0.8163 0.9577 0.8865 

Conf 0.7582 0.9003 0.8407 0.8192 0.9563 0.8908 

CER 0.7117 0.8675 0.8018 0.7624 0.9461 0.8560 

Freq 0.5915 0.7459 0.6950 0.6531 0.8790 0.7728 

Prob 0.7992 0.9331 0.8716 0.8455 0.9636 0.9066 

Continent 141 Vote 141 0.9574 1 0.9787 133 0.9699 1 0.9850 

Conf 0.9574 1 0.9787 0.9699 1 0.9850 

CER 0.9362 0.9929 0.9656 0.9549 0.9925 0.9752 

Freq 0.9574 1 0.9787 0.9624 1 0.9812 

Prob 0.9716 1 0.9858 0.9774 1 0.9887 

Region 141 Vote 134 0.5448 0.9179 0.7295 115 0.6783 0.9652 0.8232 

Conf 0.4851 0.8060 0.6669 0.6609 0.9478 0.8025 

CER 0.8134 0.9478 0.8835 0.7826 0.9826 0.8812 

Freq 0.4328 0.8134 0.6314 0.6261 0.9478 0.7851 

Prob 0.6045 0.9030 0.7599 0.7217 0.9739 0.8442 

SurfaceArea 141 Vote 138 0.7971 0.9565 0.8776 138 0.8261 0.9638 0.8948 

Conf 0.8696 0.9348 0.9102 0.8551 0.9420 0.9076 

CER 0.3768 0.6812 0.5556 0.5217 0.8841 0.7007 

Freq 0.0290 0.1232 0.1856 0.0580 0.5725 0.3475 

Prob 0.8913 0.9710 0.9327 0.8841 0.9710 0.9296 

IndepYear 190 Vote 180 0.7111 0.8389 0.7894 171 0.7544 0.9006 0.8240 

Conf 0.6889 0.8111 0.7761 0.7544 0.9240 0.8441 

CER 0.6056 0.7778 0.7148 0.7076 0.9064 0.8158 

Freq 0.6944 0.8167 0.7719 0.7544 0.9123 0.8368 

Prob 0.7389 0.8555 0.8146 0.7895 0.9064 0.8605 

Capital 141 Vote 139 0.7986 0.9568 0.8770 129 0.8527 0.9767 0.9154 

Conf 0.7986 0.9712 0.8828 0.8527 0.9767 0.9163 

CER 0.8561 0.9640 0.9142 0.8760 0.9845 0.9302 

Freq 0.7986 0.9496 0.8746 0.8605 0.9767 0.9173 

Prob 0.7986 0.9568 0.8764 0.8527 0.9845 0.9143 
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Fig. 5. Varying the number of analyzed snippets. 

Table 8 

Different patterns of submitted queries. 

Target attribute Query pattern #1 Query pattern #2 

Title ( BX ) t[ ISBN ] t[ ISBN ] + t[ Publication Year ] + “title”

Publisher ( BX ) t[ ISBN ] + t[ Publication Year ] + “publisher” t[ ISBN ] + t[ Title ] + t[ Publication Year ] + “publisher”

SurfaceArea ( world ) t[ Name ] + “surface area square km” t[ Name ] + t[ Continent ] italic > ] + t[ Region ] + t[ Capital ] + t[ IndepYear ] 

+ “surface area square km”

IndepYear ( world ) t[ Name ] + “independence” t[ Name ] + t[ Continent ] + t[ Region ] + t[ Capital ] + “independence”

Fig. 6. Varying query patterns (Maximum # of Snippets = 300). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gradually flattens out. The only exception is the Freq method applied on the surface area attribute of world . In this case,

due to the presence of trivial numbers, considering more snippets may introduce more noise and compound the difficulty

of ranking by frequency. As a result, after 20, the imputation success rate instead decreases with the increasing number of

analyzed snippets. It can be observed that Prob consistently performs best among the tested approaches. 

5.5. Varying query patterns 

We also evaluate the performance of the ranking methods given different keyword query patterns. The query patterns for

the attributes of BX and world are presented in Table 8 . Generally, the query pattern #1 is short while the query pattern #2

is longer. It can be expected that a short query usually retrieves more snippets than a longer one. The detailed experimental

results are presented in Fig. 6 . We have the following observations: (1) different query patterns may retrieve different snip-

pets; therefore, they may significantly affect the imputation success rate. Take Fig. 6 (a) as an example, the # Top1 values of

Prob given a short query and a longer one are 152 and 124 respectively; (2) with either short queries or long queries, Prob

achieves the best performance among the tested methods; (3) the performance advantage of Prob over other approaches

are more considerable in the case of longer queries than in the case of short queries. The ranking effectiveness of the Freq

and Vote methods largely depends on the large corpus size of analyzed snippets. Longer queries often result in less snippets

being retrieved. In comparison, by semantic reasoning, the Prob approach can rank effectively using less snippets. Therefore,

the performance advantage of Prob tends to increase as the queries become longer. 

5.6. With the stricter extraction technique 

This subsection evaluates the performance of different ranking approaches with the candidates being extracted by

a stricter pattern-based technique. The detailed experimental results on the BX and world datasets are presented in

Tables 6 and 7 respectively. A maximal of 300 snippets are analyzed for each input query. It can be observed that simi-

lar to the case of using the loose NER-based extraction technique, the Prob approach achieves the best performance among
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the tested approaches. As expected, all the tested approaches achieve considerably better ranking accuracy. However, the

stricter extraction technique effectively reduces the imputation recall because less values are included in the candidate set. 

6. Conclusion 

In this paper, we present a semantic and probabilistic ranking framework for web-based relational data imputation. The

proposed framework consists of two components, the snippet influence model measuring the influence of a retrieved snippet

and the semantic matching model measuring the semantic similarity between a candidate value in a snippet and a missing

attribute value in a relational tuple. We also provide effective estimation solutions for both models. Finally, we demonstrate

by extensive experiments on real datasets that the proposed framework performs considerably better than the existing

alternatives on ranking accuracy. On future work, it is interesting to investigate whether the proposed probabilistic ranking

framework can be extended for the task of web-based question answering. Since the semantic context of a natural language

question can be obscure and ambiguous, semantic reasoning is more challenging for question answering than for relational

data imputation. 
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